Abstract

A low-loss add-drop microring resonator (MRR) with an ultra-large free spectral range (FSR) is demonstrated by introducing an ultra-sharp multimode waveguide bend and bent asymmetrical directional couplers (ADCs). The multimode microring waveguide is introduced to achieve a low bent loss, even with a small radius (e.g., R = 0.8 μm). The bent ADCs are used to suppress the resonance of higher-order modes. For the fabricated device, the transmission at the drop port has a narrow 3 dB-bandwidth of 0.8 nm and a low excess loss of 1.8 dB. A record large FSR of 93 nm is achieved to the best of our knowledge.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-selective microring resonators

Ying Tan, Sitao Chen, and Daoxin Dai
Opt. Express 25(4) 4106-4119 (2017)

On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems

Shipeng Wang, Xianglian Feng, Shiming Gao, Yaocheng Shi, Tingge Dai, Hui Yu, Hon-Ki Tsang, and Daoxin Dai
Opt. Lett. 42(14) 2802-2805 (2017)

FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers

Nourhan Eid, Robert Boeck, Hasitha Jayatilleka, Lukas Chrostowski, Wei Shi, and Nicolas A. F. Jaeger
Opt. Express 24(25) 29009-29021 (2016)

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
    [Crossref]
  2. J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
    [Crossref]
  3. D. X. Dai, “Silicon nanophotonic integrated devices for on-chip multiplexing and switching,” J. Lightwave Technol. 35(4), 572–587 (2017).
    [Crossref]
  4. H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
    [Crossref] [PubMed]
  5. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
    [Crossref]
  6. Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, “Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing,” Opt. Lett. 43(9), 1962–1965 (2018).
    [Crossref] [PubMed]
  7. A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
    [Crossref] [PubMed]
  8. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  9. M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
    [Crossref]
  10. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [Crossref] [PubMed]
  11. A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
    [Crossref]
  12. A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
    [Crossref]
  13. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]
  14. N. Eid, R. Boeck, H. Jayatilleka, L. Chrostowski, W. Shi, and N. A. F. Jaeger, “FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers,” Opt. Express 24(25), 29009–29021 (2016).
    [Crossref] [PubMed]
  15. D. Urbonas, A. Balčytis, M. Gabalis, K. Vaškevičius, G. Naujokaitė, S. Juodkazis, and R. Petruškevičius, “Ultra-wide free spectral range, enhanced sensitivity, and removed mode splitting SOI optical ring resonator with dispersive metal nanodisks,” Opt. Lett. 40(13), 2977–2980 (2015).
    [Crossref] [PubMed]
  16. T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
    [Crossref]
  17. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16(8), 1433–1446 (1998).
    [Crossref]
  18. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
    [Crossref] [PubMed]
  19. T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
    [Crossref] [PubMed]

2018 (2)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

Y. Tan, H. Wu, S. Wang, C. Li, and D. Dai, “Silicon-based hybrid demultiplexer for wavelength- and mode-division multiplexing,” Opt. Lett. 43(9), 1962–1965 (2018).
[Crossref] [PubMed]

2017 (2)

D. X. Dai, “Silicon nanophotonic integrated devices for on-chip multiplexing and switching,” J. Lightwave Technol. 35(4), 572–587 (2017).
[Crossref]

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

2016 (1)

2015 (2)

2012 (2)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

2011 (1)

2010 (3)

2009 (1)

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

1998 (1)

Baets, R.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Balcytis, A.

Beausoleil, R. G.

Bienstman, P.

Boeck, R.

Bogaerts, W.

Bowers, J. E.

Chen, R. T.

Chin, M. K.

Chrostowski, L.

Claes, T.

Cohen, O.

Dai, D.

Dai, D. X.

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

D. X. Dai, “Silicon nanophotonic integrated devices for on-chip multiplexing and switching,” J. Lightwave Technol. 35(4), 572–587 (2017).
[Crossref]

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Doylend, J. K.

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Eid, N.

Fang, A. W.

Fattal, D.

Gabalis, M.

Guo, T. B.

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Han, Z. H.

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Ho, S. T.

Hosseini, A.

Jaeger, N. A. F.

Jayatilleka, H.

Jones, R.

Juodkazis, S.

Knights, A. P.

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

Kumar Selvaraja, S.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Kwong, D.

Li, C.

Lipson, M.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Liu, T.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Naujokaite, G.

Nawrocka, M. S.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Panepucci, R. R.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Paniccia, M. J.

Park, H.

Petruškevicius, R.

Prabhu, A. M.

A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
[Crossref]

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Raday, O.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Shi, W.

Subbaraman, H.

Tan, Y.

Tsay, A.

A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
[Crossref]

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Urbonas, D.

Van, V.

A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
[Crossref]

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Vaškevicius, K.

Wang, S.

Wang, X.

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

Wu, H.

Xu, Q.

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Xu, X.

Yin, Y. L.

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Zhang, M.

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

Zhang, X.

Zhang, Y.

Zhanghua Han,

A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
[Crossref]

Appl. Phys. Lett. (1)

M. S. Nawrocka, T. Liu, X. Wang, and R. R. Panepucci, “Tunable silicon microring resonator with wide free spectral range,” Appl. Phys. Lett. 89(7), 071110 (2006).
[Crossref]

IEEE Photonics J. (1)

A. M. Prabhu, A. Tsay, Zhanghua Han, and V. Van, “Extreme miniaturization of silicon add–drop microring filters for VLSI photonics applications,” IEEE Photonics J. 2(3), 436–444 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. B. Guo, M. Zhang, Y. L. Yin, and D. X. Dai, “A laser-trimming-assist wavelength-alignment technique for silicon microdonut resonators,” IEEE Photonics Technol. Lett. 29(5), 419–422 (2017).
[Crossref]

A. M. Prabhu, A. Tsay, Z. H. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

J. Lightwave Technol. (2)

Laser Photonics Rev. (3)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photonics Rev. 12(4), 1700237 (2018).
[Crossref]

J. K. Doylend and A. P. Knights, “The evolution of silicon photonics as an enabling technology for optical interconnection,” Laser Photonics Rev. 6(4), 504–525 (2012).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photonics Rev. 6(1), 47–73 (2012).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (7)

A. W. Fang, R. Jones, H. Park, O. Cohen, O. Raday, M. J. Paniccia, and J. E. Bowers, “Integrated AlGaInAs-silicon evanescent race track laser and photodetector,” Opt. Express 15(5), 2315–2322 (2007).
[Crossref] [PubMed]

H. Subbaraman, X. Xu, A. Hosseini, X. Zhang, Y. Zhang, D. Kwong, and R. T. Chen, “Recent advances in silicon-based passive and active optical interconnects,” Opt. Express 23(3), 2487–2510 (2015).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19(11), 10940–10949 (2011).
[Crossref] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

T. Claes, W. Bogaerts, and P. Bienstman, “Experimental characterization of a silicon photonic biosensor consisting of two cascaded ring resonators based on the Vernier-effect and introduction of a curve fitting method for an improved detection limit,” Opt. Express 18(22), 22747–22761 (2010).
[Crossref] [PubMed]

N. Eid, R. Boeck, H. Jayatilleka, L. Chrostowski, W. Shi, and N. A. F. Jaeger, “FSR-free silicon-on-insulator microring resonator based filter with bent contra-directional couplers,” Opt. Express 24(25), 29009–29021 (2016).
[Crossref] [PubMed]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[Crossref] [PubMed]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Top view of the proposed MRR; (b) Cross section of the SOI waveguide.
Fig. 2
Fig. 2 Calculated the group index ng (a) and FSR (b) of the TE0 mode for the waveguide width w1 = 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 μm as the radius R1 varies; (c) Calculated the bent loss of the TE0 mode as the core width w1 varies (R1 = 0.7, 0.8, 0.9 μm).
Fig. 3
Fig. 3 (a) Calculated results of neffR; (b) Power coupling ratio as the angle θ increases. Here (R1, R2) = (0.8, 1.575) μm, (w1, w2) = (0.85, 0.325) μm; (c) Calculated spectral response of the design MRR; (d) The mode field of the MRR at the resonance wavelength (λ = 1597.3 nm). Here (R1, R2) = (0.8, 1.575) μm, (w1, w2) = (0.85, 0.325) μm, and θ = 20°.
Fig. 4
Fig. 4 Microscope images of the fabricated silicon photonic integrated circuit (PIC) with MRRs; (a) Four-channel add-drop filters based on MRRs with submicron radii of 0.8, 0.81, 0.82 and 0.83 μm; (b) Grating couplers for chip-fiber coupling; (c) Zoom-in view of one of the MRRs.
Fig. 5
Fig. 5 (a) Measured spectral responses at the drop ports and the through port of the fabricated MRRs; (b) The resonance wavelengths for the MRRs with different radii; (c) Theoretical fitting for the spectral response of MRR #2 with R = 0.81 μm.
Fig. 6
Fig. 6 Measured spectral responses of the fabricated MRRs with different coupling angles, i.e., (a) θ = 0°, (b) θ = 15°, (c) θ = 20° and (d) θ = 30°. Here, all the radii of MRRs are 0.8 μm.

Tables (1)

Tables Icon

Table 1 Comparison of reported ultra-compact MRRs on silicon.

Metrics