Abstract

Interferenceless coded aperture correlation holography (I-COACH) is a non-scanning, motionless, incoherent digital holography technique for 3D imaging. The lateral and axial resolutions of I-COACH are equivalent to those of conventional direct imaging with the same numerical aperture. The main component of I-COACH is a coded phase mask (CPM) used as the system aperture. In this study, the CPM has been engineered using a modified Gerchberg-Saxton algorithm to generate a random distribution of subdiffraction spot arrays on the digital camera as a system response to a point source illumination. A library of point object holograms is created to calibrate the system for imaging different lateral sections of a 3D object. An object is placed within the calibrated 3D space and an object hologram is recorded with the same CPM. The various planes of the object are reconstructed by a non-linear cross-correlation between the object hologram and the point object hologram library. A lateral resolution enhancement of about 25% was noted in the case of I-COACH compared to direct imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH)

Mani R. Rai, A. Vijayakumar, and Joseph Rosen
Opt. Express 26(14) 18143-18154 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
    [Crossref]
  2. B. Huang, “Super-resolution optical microscopy: multiple choices,” Curr. Opin. Chem. Biol. 14(1), 10–14 (2010).
    [Crossref] [PubMed]
  3. B. O. Leung and K. C. Chou, “Review of super-resolution fluorescence microscopy for biology,” Appl. Spectrosc. 65(9), 967–980 (2011).
    [Crossref] [PubMed]
  4. J. W. Goodman, Introduction to Fourier Optics (W. H. Freeman, 2017).
  5. A. V. Baez, “Fresnel zone plate for optical image formation using extreme ultraviolet and soft X radiation,” J. Opt. Soc. Am. 51(4), 405–412 (1961).
    [Crossref]
  6. G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
    [Crossref]
  7. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
    [Crossref] [PubMed]
  8. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
    [Crossref] [PubMed]
  9. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  10. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
    [Crossref] [PubMed]
  11. W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
    [Crossref] [PubMed]
  12. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46(6), 993–1000 (2007).
    [Crossref] [PubMed]
  13. E. McLeod and A. Ozcan, “Unconventional methods of imaging: computational microscopy and compact implementations,” Rep. Prog. Phys. 79(7), 076001 (2016).
    [Crossref] [PubMed]
  14. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  15. J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
    [Crossref]
  16. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [Crossref] [PubMed]
  17. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
    [Crossref] [PubMed]
  18. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
    [Crossref] [PubMed]
  19. B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
    [Crossref] [PubMed]
  20. Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41(7), 1558–1561 (2016).
    [Crossref] [PubMed]
  21. Y. Kashter, A. Vijayakumar, and J. Rosen, “Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder,” Optica 4(8), 932–939 (2017).
    [Crossref]
  22. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
    [Crossref] [PubMed]
  23. A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
    [Crossref] [PubMed]
  24. M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH),” Opt. Express 26(14), 18143–18154 (2018).
    [Crossref] [PubMed]
  25. S. Mukherjee and J. Rosen, “Imaging through scattering medium by adaptive non-linear digital processing,” Sci. Rep. 8(1), 10517 (2018).
    [Crossref] [PubMed]
  26. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).
  27. Y. Ogura, M. Aino, and J. Tanida, “Design and demonstration of fan-out elements generating an array of subdiffraction spots,” Opt. Express 22(21), 25196–25207 (2014).
    [Crossref] [PubMed]
  28. Y. Ogura, M. Aino, and J. Tanida, “Diffractive fan-out elements for wavelength-multiplexing subdiffraction-limit spot generation in three dimensions,” Appl. Opt. 55(23), 6371–6380 (2016).
    [Crossref] [PubMed]
  29. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
    [Crossref] [PubMed]
  30. M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
    [Crossref] [PubMed]
  31. M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
    [Crossref] [PubMed]
  32. M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
    [Crossref] [PubMed]

2018 (3)

2017 (5)

2016 (5)

2014 (1)

2013 (2)

J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
[Crossref] [PubMed]

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

2012 (2)

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (1)

B. Huang, “Super-resolution optical microscopy: multiple choices,” Curr. Opin. Chem. Biol. 14(1), 10–14 (2010).
[Crossref] [PubMed]

2008 (1)

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

2007 (2)

2006 (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

2000 (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

1994 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

1961 (1)

Aino, M.

Baez, A. V.

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Brooker, G.

Chen, F. R.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Chou, K. C.

Duewer, F. W.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Feizi, A.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

Feser, M.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Göröcs, Z.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

Hell, S. W.

Ho, S. T.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Hong, J.

Horstmeyer, R.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Huang, B.

B. Huang, “Super-resolution optical microscopy: multiple choices,” Curr. Opin. Chem. Biol. 14(1), 10–14 (2010).
[Crossref] [PubMed]

Indebetouw, G.

Kashter, Y.

Katz, B.

Kelner, R.

Kim, M. K.

Kumar, M.

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

Leung, B. O.

Liang, K. S.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Luo, W.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

McLeod, E.

E. McLeod and A. Ozcan, “Unconventional methods of imaging: computational microscopy and compact implementations,” Rep. Prog. Phys. 79(7), 076001 (2016).
[Crossref] [PubMed]

Miyamoto, Y.

Mukherjee, S.

S. Mukherjee and J. Rosen, “Imaging through scattering medium by adaptive non-linear digital processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref] [PubMed]

Ogura, Y.

Ozcan, A.

E. McLeod and A. Ozcan, “Unconventional methods of imaging: computational microscopy and compact implementations,” Rep. Prog. Phys. 79(7), 076001 (2016).
[Crossref] [PubMed]

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

Rai, M. R.

Ratnam Rai, M.

Ravi, K.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Rosen, J.

S. Mukherjee and J. Rosen, “Imaging through scattering medium by adaptive non-linear digital processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref] [PubMed]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref] [PubMed]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH),” Opt. Express 26(14), 18143–18154 (2018).
[Crossref] [PubMed]

Y. Kashter, A. Vijayakumar, and J. Rosen, “Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder,” Optica 4(8), 932–939 (2017).
[Crossref]

M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[Crossref] [PubMed]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
[Crossref] [PubMed]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41(7), 1558–1561 (2016).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
[Crossref] [PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
[Crossref] [PubMed]

B. Katz and J. Rosen, “Could SAFE concept be applied for designing a new synthetic aperture telescope?” Opt. Express 19(6), 4924–4936 (2011).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
[Crossref] [PubMed]

G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46(6), 993–1000 (2007).
[Crossref] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Sheppard, C. J. R.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Shieh, H. P. D.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Siegel, N.

Song, Y. F.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Tada, Y.

Tang, M. T.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Tanida, J.

Vienne, G.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Vijayakumar, A.

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref] [PubMed]

M. R. Rai, A. Vijayakumar, and J. Rosen, “Non-linear adaptive three-dimensional imaging with interferenceless coded aperture correlation holography (I-COACH),” Opt. Express 26(14), 18143–18154 (2018).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
[Crossref] [PubMed]

M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[Crossref] [PubMed]

Y. Kashter, A. Vijayakumar, and J. Rosen, “Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder,” Optica 4(8), 932–939 (2017).
[Crossref]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[Crossref] [PubMed]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

Y. Kashter, A. Vijayakumar, Y. Miyamoto, and J. Rosen, “Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination,” Opt. Lett. 41(7), 1558–1561 (2016).
[Crossref] [PubMed]

Wang, H.

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Wichmann, J.

Yang, C.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Yin, G. C.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Yun, W.

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Zhang, Y.

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

Zheng, G.

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

G. C. Yin, Y. F. Song, M. T. Tang, F. R. Chen, K. S. Liang, F. W. Duewer, M. Feser, W. Yun, and H. P. D. Shieh, “30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope,” Appl. Phys. Lett. 89(22), 221122 (2006).
[Crossref]

Appl. Spectrosc. (1)

Curr. Opin. Chem. Biol. (1)

B. Huang, “Super-resolution optical microscopy: multiple choices,” Curr. Opin. Chem. Biol. 14(1), 10–14 (2010).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(Pt 2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

H. Wang, C. J. R. Sheppard, K. Ravi, S. T. Ho, and G. Vienne, “Fighting against diffraction: apodization and near field diffraction structures,” Laser Photonics Rev. 6(3), 354–392 (2012).
[Crossref]

Light Sci. Appl. (1)

W. Luo, Y. Zhang, A. Feizi, Z. Göröcs, and A. Ozcan, “Pixel super-resolution using wavelength scanning,” Light Sci. Appl. 5(4), e16060 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–795 (2006).
[Crossref] [PubMed]

Nat. Photonics (2)

G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2(3), 190–195 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Optica (1)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Rep. Prog. Phys. (1)

E. McLeod and A. Ozcan, “Unconventional methods of imaging: computational microscopy and compact implementations,” Rep. Prog. Phys. 79(7), 076001 (2016).
[Crossref] [PubMed]

Sci. Rep. (2)

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

S. Mukherjee and J. Rosen, “Imaging through scattering medium by adaptive non-linear digital processing,” Sci. Rep. 8(1), 10517 (2018).
[Crossref] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (W. H. Freeman, 2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Optical configuration of I-COACH. L1, L2 – Refractive lenses: P- Polarizer; SLM - Spatial light modulator; DL – Diffractive lens; CPM - Coded phase mask.
Fig. 2
Fig. 2 Experimental setup. BS1 and BS2 – Beam splitters; SLM – Spatial light modulator; USAF – United States Air Force; L1A, L1B and L2 – Refractive lenses; LED1 and LED2 – Identical light emitting diodes; CPM – Coded phase mask; QPM – Quadratic phase mask; BPF – Band pass filter (λc = 632.8 nm and Δλ = 5 nm); P- Polarizer; ⦿- Polarization orientation perpendicular to the plane of the page.
Fig. 3
Fig. 3 Images of the CPM, PSH and object Hologram for spot densities of 0.009 and 0.09.
Fig. 4
Fig. 4 Reconstruction results of USAF Target (Group 6 element 2) for spot densities 0.009, 0.018, 0.036, 0.054, 0.072 and 0.09. Minimum resolvable feature is shown in red box.
Fig. 5
Fig. 5 Line Profile, Visibility Plot and dip of minima percentage from maxima for different spot densities.
Fig. 6
Fig. 6 Object reconstruction results for RE-COACH, regular I-COACH and direct imaging. The minimum resolvable feature is shown in the red box.
Fig. 7
Fig. 7 Reconstruction results of (a) plane A, (b) plane B separated by a distance of 4 mm from a single camera shot of RE-COACH. (c) Direct imaging when plane A was in focus.
Fig. 8
Fig. 8 Plots of the axial response curves for RE-COACH (blue) and direct imaging (red).
Fig. 9
Fig. 9 Reconstruction results of the RE-COACH method and direct imaging for greyscale objects.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I PSH ( r ¯ 0 ; r ¯ s , z s )=| I s C 0 L( r ¯ s z s )exp[ iΦ( r ¯ ) ]Q( 1 z s - 1 f 2 - 1 z h ) *Q( 1 z h )| 2 ,
I PSH ( r ¯ 0 ; r ¯ s , z s )= | ν[ 1 λ z F ] { I s C 0 L( r ¯ s z s )Q( ζ )exp[ iΦ( r ¯ ) ] } | 2 = I PSH ( r ¯ 0 z h z s r ¯ s ;0, z s ),
ζ= ( z s f 2 )( z s f 2 + z s z h z h f 2 ) ( z s f 2 ) 2 , z F = z s f 2 z h z s f 2 + z s z h z h f 2
o( r ¯ s )= j N a j δ( r ¯ r ¯ s,j ) .
I OBJ ( r ¯ 0 ; z s )= j a j I PSH ( r ¯ 0 z h z s r ¯ s,j ;0, z s )
C ^ = { I OBJ I PSH }= I ^ OBJ I ^ PSH = | I ^ PSH | o exp[ i( φ PSH +2π z h r ¯ s ν ¯ / z s ) ] | I ^ PSH | r exp[ i φ PSH ] = | I ^ PSH | o exp[ i2π z h r ¯ s ν ¯ / z s ] | I ^ PSH | r ,
S( o,r )= M N ϕ(m,n)log[ ϕ(m,n) ] ,
ϕ(m,n)= | R( m,n ) | M N | R( m,n ) | .

Metrics