Abstract

The detection of nanoscale structure/material property in a wide observation area is becoming very important in various application fields. However, it is difficult to utilize current optical technologies. Toward the realization of novel alternative, we have investigated a new optical sensing method using an optical nanofiber. When the nanofiber vertically approached a glass prism with a partial gold film, the material differences between the glass and the gold were detected as a transmittance difference of 6% with a vertical resolution of 9.6 nm. The nanofiber was also scanned 100 nm above an artificial small protruding object with a width of 240 nm. The object was detected with a horizontal resolution of 630 nm, which was less than the wavelength of the probe light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Near-field optical imaging with a CdSe single nanocrystal-based active tip

Y. Sonnefraud, N. Chevalier, J.-F. Motte, S. Huant, P. Reiss, J. Bleuse, F. Chandezon, M. T. Burnett, W. Ding, and S. A. Maier
Opt. Express 14(22) 10596-10602 (2006)

Amplitude and phase images of cellular structures with a scanning surface plasmon microscope

L. Berguiga, T. Roland, K. Monier, J. Elezgaray, and F. Argoul
Opt. Express 19(7) 6571-6586 (2011)

Scattering reduction at near-infrared frequencies using plasmonic nanostructures

Venkata Ananth Tamma, Yonghao Cui, and Wounjhang Park
Opt. Express 21(1) 1041-1056 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Dunn, “Near-Field Scanning Optical Microscopy,” Chem. Rev. 99, 2891–2927 (1999).
    [Crossref]
  2. P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics,  7, 1–65 (2015).
    [Crossref]
  3. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
    [Crossref] [PubMed]
  4. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [Crossref] [PubMed]
  5. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
    [Crossref]
  6. V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
    [Crossref]
  7. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref] [PubMed]
  8. M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express 19, 26470–26485 (2011).
    [Crossref]
  9. M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
    [Crossref] [PubMed]
  10. F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  11. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
    [Crossref] [PubMed]
  12. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
    [Crossref] [PubMed]
  13. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [Crossref] [PubMed]
  14. L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
    [Crossref]
  15. A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
    [Crossref]
  16. E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.
  17. R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006).
    [Crossref] [PubMed]
  18. F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21, 27759–27769 (2013).
    [Crossref]
  19. I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
    [Crossref]
  20. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596 (2011).
    [Crossref] [PubMed]
  21. P. Polynkin, A. Polynkin, N. Peyghambarian, and M. Mansuripur, “Evanescent field-based optical fiber sensing device for measuring the refractive index of liquids in microfluidic channels,” Opt. Lett. 30, 1273 (2005).
    [Crossref] [PubMed]
  22. L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
    [Crossref] [PubMed]
  23. J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
    [Crossref] [PubMed]
  24. L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
    [Crossref] [PubMed]
  25. L. Tong, “Micro/Nanofibre Optical Sensors: Challenges and Prospects,” Sensors,  18, 903 (2018).
    [Crossref]
  26. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
    [Crossref]
  27. E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

2018 (1)

L. Tong, “Micro/Nanofibre Optical Sensors: Challenges and Prospects,” Sensors,  18, 903 (2018).
[Crossref]

2017 (1)

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

2015 (2)

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics,  7, 1–65 (2015).
[Crossref]

2014 (2)

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

2011 (4)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596 (2011).
[Crossref] [PubMed]

M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express 19, 26470–26485 (2011).
[Crossref]

2008 (1)

2006 (2)

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (3)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

2003 (2)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

1999 (1)

R. C. Dunn, “Near-Field Scanning Optical Microscopy,” Chem. Rev. 99, 2891–2927 (1999).
[Crossref]

Aharonovich, I.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Almokhtar, M.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Balykin, V.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Balykin, V. I.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

Benson, O.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

Brion, E.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Burchardt, D.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Chormaic, S. N.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

de Groot, P.

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics,  7, 1–65 (2015).
[Crossref]

Dunn, R. C.

R. C. Dunn, “Near-Field Scanning Optical Microscopy,” Chem. Rev. 99, 2891–2927 (1999).
[Crossref]

Dutta Gupta, S.

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Fini, J. M.

Frawley, M.

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

Fujiwara, H.

Fujiwara, M.

Gattass, R. R.

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Gu, F.

Guérout, R.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Gusachenko, I.

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Kien, F. L.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Kien, F. Le

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

Krueger, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Lepers, M.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Liang, J.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Liang, J. Q.

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Lou, J.

Mansuripur, M.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Mazur, E.

Meinhardt, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Mølmer, K.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Monzón-Hernández, D.

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

Münchow, A. v.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Nic Chormaic, S.

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

Noda, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Petersen, F.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Peyghambarian, N.

Polynkin, A.

Polynkin, P.

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Ren, F.

Robert, J.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Sasaki, K.

Schell, A. W.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Schröder, T.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Stourm, E.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Sumetsky, M.

Svacha, G. T.

Takashima, H.

Takeuchi, S.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

Tanaka, Y.

Tashima, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Tong, L.

L. Tong, “Micro/Nanofibre Optical Sensors: Challenges and Prospects,” Sensors,  18, 903 (2018).
[Crossref]

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[Crossref] [PubMed]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006).
[Crossref] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596 (2011).
[Crossref] [PubMed]

Tran, T. T.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Truong, V.

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Villatoro, J.

Wang, P.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

Weber, M.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Xiao, Y.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Yin, X.

Yu, H.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

Zhang, L.

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[Crossref] [PubMed]

Zhang, Y.

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Zhao, H.-Q.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling Quantum Emitters in 2D Materials with Tapered Fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Adv. Opt. Photonics (1)

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics,  7, 1–65 (2015).
[Crossref]

Appl. Phys. Lett. (2)

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett. 89, 121107 (2006).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Appl. Phys. Lett. 104, 031101 (2014).
[Crossref]

Chem. Rev. (1)

R. C. Dunn, “Near-Field Scanning Optical Microscopy,” Chem. Rev. 99, 2891–2927 (1999).
[Crossref]

Lab on a Chip (1)

L. Zhang, P. Wang, Y. Xiao, H. Yu, and L. Tong, “Ultra-sensitive microfibre absorption detection in a microfluidic chip,” Lab on a Chip 11, 3720 (2011).
[Crossref] [PubMed]

Nano Lett (1)

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly Efficient Coupling of Photons from Nanoemitters into Single-Mode Optical Fibers,” Nano Lett.  11, 4362–4365 (2011).
[Crossref] [PubMed]

Nature (2)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816–819 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun. 242, 445–455 (2004).
[Crossref]

Opt. Express (9)

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

M. Sumetsky and J. M. Fini, “Surface nanoscale axial photonics,” Opt. Express 19, 26470–26485 (2011).
[Crossref]

M. Almokhtar, M. Fujiwara, H. Takashima, and S. Takeuchi, “Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices,” Opt. Express 22, 20045–20059 (2014).
[Crossref] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref] [PubMed]

R. R. Gattass, G. T. Svacha, L. Tong, and E. Mazur, “Supercontinuum generation in submicrometer diameter silica fibers,” Opt. Express 14, 9408–9414 (2006).
[Crossref] [PubMed]

F. Ren, H. Takashima, Y. Tanaka, H. Fujiwara, and K. Sasaki, “Two-photon excited fluorescence from a pseudoisocyanine-attached gold-coated tip via a thin tapered fiber under a weak continuous wave excitation,” Opt. Express 21, 27759–27769 (2013).
[Crossref]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express 19, 8596 (2011).
[Crossref] [PubMed]

L. Zhang, F. Gu, J. Lou, X. Yin, and L. Tong, “Fast detection of humidity with a subwavelength-diameter fiber taper coated with gelatin film,” Opt. Express 16, 13349–13353 (2008).
[Crossref] [PubMed]

J. Villatoro and D. Monzón-Hernández, “Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers,” Opt. Express 13, 5087–5092 (2005).
[Crossref] [PubMed]

Opt. Lett. (1)

Photonics (1)

I. Gusachenko, V. Truong, M. Frawley, and S. Nic Chormaic, “Optical Nanofiber Integrated into Optical Tweezers for In Situ Fiber Probing and Optical Binding Studies,” Photonics 2, 795–807 (2015).
[Crossref]

Phys. Rev. A (2)

F. Le Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

V. I. Balykin, K. Hakuta, F. Le Kien, J. Q. Liang, and M. Morinaga, “Atom trapping and guiding with a subwavelength-diameter optical fiber,” Phys. Rev. A,  70, 011401 (2004).
[Crossref]

Phys. Rev. Lett. (1)

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient Channeling of Fluorescence Photons from Single Quantum Dots into Guided Modes of Optical Nanofiber,” Phys. Rev. Lett. 109, 063602 (2012).
[Crossref] [PubMed]

Sensors (1)

L. Tong, “Micro/Nanofibre Optical Sensors: Challenges and Prospects,” Sensors,  18, 903 (2018).
[Crossref]

Other (2)

E. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

E. Stourm, Y. Zhang, M. Lepers, R. Guérout, J. Robert, S. N. Chormaic, K. Mølmer, and E. Brion, “Spontaneous emission of a sodium Rydberg atom close to an optical nanofibre,” arXiv:1810.06887.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup of the sensing method. (a) The optical setup used in experiments: FC, fiber coupler; HWP, half-wave plate; QWP, quarter-wave plate; PD, photodiode. The movement of the nanofiber during scans is depicted by the two arrows. The blue arrow is a vertical scan along the z-axis and the orange arrow is a horizontal scan along the x-axis. (b) Picture of an optical nanofiber and an observed object, taken from above.
Fig. 2
Fig. 2 Sketch of the test samples and scheme of the experiments. (a) A vertical scan and a horizontal scan are performed over a prism which is partially coated with gold. (b) A horizontal scan is performed over a prism with a tiny protruding object on its edge.
Fig. 3
Fig. 3 Schematic diagram of the structure and geometry of the simulation model. Light is injected from the light source and the intensity distribution of transmitted light is captured at the monitor.
Fig. 4
Fig. 4 Transmittance change when the nanofiber approaches the prism: (a) Experimental results, (b) FDTD simulation. The black and red dots are the transmittance at the glass region and the gold-coated region, respectively. The lines are fitting curves using an 8-dimensional polynomial function. The triangles, dotted lines, and numbered arrows in (b) are discussed in section 5.
Fig. 5
Fig. 5 (a) Horizontal scan of a nanofiber for measuring transmittance, (b)SEM image of the observed prism, and (c) normalized transmittance. In (c), the red dashed line is the average transmittance in the gold-coated region and the blue dashed line is in the glass region. The dips (A–C) in (c) seem to correspond to the protruding objects in (b).
Fig. 6
Fig. 6 (a) SEM image of the protruding object on the edge of the prism. The hollows on both sides of the object are formed by the FIB. The target object is located inside the orange box. (b) Detailed scan image of the target protruding object. The width at the middle of this object of 240 nm is estimated from this image.
Fig. 7
Fig. 7 Transmittance change when the nanofiber is scanned above the protruding object. The black dots are the measured transmittances and the red line is a fitted curve using a Lorentzian function. The protruding object shown in Fig. 6(b) is detected as a dip in the transmittance change.
Fig. 8
Fig. 8 (a) Calculation model for detecting a protruding object. (b) Calculated transmittance change during a scan. The black dots are calculated values and the red line is a fitting curve by a Lorentzian function.

Metrics