Abstract

We present a direct experimental investigation of the optical field distribution around a suspended tapered optical nanofiber by means of a fluorescent scanning probe. Using a 100 nm diameter fluorescent bead as a probe of the field intensity, we study interferences made by a nanofiber (400 nm diameter) scattering a plane wave (568 nm wavelength). Our scanning fluorescence near-field microscope maps the optical field over 36 μm2, with λ/5 resolution, from contact with the surface of the nanofiber to a few micrometers away. Comparison between experiments and Mie scattering theory allows us to precisely determine the emitter-nanofiber distance and experimental drifts.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. De Wilde
Opt. Express 21(9) 11536-11545 (2013)

Near-field optical microscopy with a nanodiamond-based single-photon tip

Aurélien Cuche, Aurélien Drezet, Yannick Sonnefraud, Orestis Faklaris, François Treussart, Jean-François Roch, and Serge Huant
Opt. Express 17(22) 19969-19980 (2009)

Fabrication and characterization of fluorescent rare-earth-doped glass-particle-based tips for near-field optical imaging applications

Lionel Aigouy, Yannick De Wilde, Michel Mortier, Jacques Giérak, and Eric Bourhis
Appl. Opt. 43(19) 3829-3837 (2004)

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
    [Crossref] [PubMed]
  2. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
    [Crossref] [PubMed]
  3. A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical 125, 688–703 (2007).
    [Crossref]
  4. E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
    [Crossref] [PubMed]
  5. C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).
  6. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997).
    [Crossref] [PubMed]
  7. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
    [Crossref]
  8. P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
    [Crossref]
  9. K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New Journal of Physics 10, 053003 (2008).
    [Crossref]
  10. N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
    [Crossref] [PubMed]
  11. R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express 20, 2932–2941 (2012).
    [Crossref] [PubMed]
  12. L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
    [Crossref]
  13. A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
    [Crossref]
  14. S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
    [Crossref]
  15. K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
    [Crossref] [PubMed]
  16. K. P. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” Opt. Express 21, 2480–2490 (2013).
    [Crossref] [PubMed]
  17. W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
    [Crossref]
  18. A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
    [Crossref] [PubMed]
  19. F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
    [Crossref]
  20. J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
    [Crossref] [PubMed]
  21. T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
    [Crossref]
  22. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
    [Crossref] [PubMed]
  23. M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
    [Crossref]
  24. V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
    [Crossref] [PubMed]
  25. D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
    [Crossref]
  26. D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
    [Crossref]
  27. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods(World Scientific, 1990).
    [Crossref]
  28. J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
    [Crossref]
  29. A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
    [Crossref]
  30. K. Karrai and I. Tiemann, “Interfacial shear force microscopy,” Phys. Rev. B 62, 13174–13181 (2000).
    [Crossref]
  31. M. Abashin, U. Levy, K. Ikeda, and Y. Fainman, “Effects produced by metal-coated near-field probes on the performance of silicon waveguides and resonators,” Opt. Lett. 32, 2602–2604 (2007).
    [Crossref] [PubMed]
  32. F. Warken and H. Giessen, “Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,” Opt. Lett. 29, 1727–1729 (2004).
    [Crossref] [PubMed]
  33. D. J. Little and D. M. Kane, “Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy,” Opt. Lett. 39, 5196–5199 (2014).
    [Crossref] [PubMed]
  34. S. Kozaki, “Scattering of a gaussian beam by a homogeneous dielectric cylinder,” Journal of Applied Physics 53, 7195–7200 (1982).
    [Crossref]
  35. R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
    [Crossref]

2018 (2)

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

2017 (3)

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

2016 (3)

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

T. V. Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves,” Optica 3, 118–126 (2016).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

2015 (4)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

2014 (5)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref] [PubMed]

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

D. J. Little and D. M. Kane, “Subdiffraction-limited radius measurements of microcylinders using conventional bright-field optical microscopy,” Opt. Lett. 39, 5196–5199 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (2)

R. Yalla, K. P. Nayak, and K. Hakuta, “Fluorescence photon measurements from single quantum dots on an optical nanofiber,” Opt. Express 20, 2932–2941 (2012).
[Crossref] [PubMed]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

2011 (1)

2010 (1)

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

2008 (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New Journal of Physics 10, 053003 (2008).
[Crossref]

2007 (2)

2004 (4)

F. Warken and H. Giessen, “Fast profile measurement of micrometer-sized tapered fibers with better than 50-nm accuracy,” Opt. Lett. 29, 1727–1729 (2004).
[Crossref] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
[Crossref]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

2000 (1)

K. Karrai and I. Tiemann, “Interfacial shear force microscopy,” Phys. Rev. B 62, 13174–13181 (2000).
[Crossref]

1997 (1)

1982 (1)

S. Kozaki, “Scattering of a gaussian beam by a homogeneous dielectric cylinder,” Journal of Applied Physics 53, 7195–7200 (1982).
[Crossref]

Abashin, M.

Aharonovich, I.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Albrecht, B.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Balykin, V.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
[Crossref]

Barber, P. W.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods(World Scientific, 1990).
[Crossref]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Bardou, N.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Bayer, B. C.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Benson, O.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Bidault, S.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Birks, T. A.

Blanquer, G.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Bonod, N.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Bouchet, D.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Bramati, A.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Bravo-Abad, J.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
[Crossref]

Burchardt, D.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Calabrese, M.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

Cammi, C.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Cao, D.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Carminati, R.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Castanié, E.

Cazé, A.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Chandra, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Cheung, G.

Collin, S.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Corzo, N. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Cova, S.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Dawkins, S. T.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

De Wilde, Y.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

Ding, C.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Du, J.

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Fainman, Y.

Fujiwara, M.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Gallas, B.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Garcia-Parajo, M. F.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Ghioni, M.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Giacobino, E.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Giessen, H.

Glorieux, Q.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Goban, A.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Gouraud, B.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Grover, J. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Gulinatti, A.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Hakuta, K.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Hill, S. C.

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods(World Scientific, 1990).
[Crossref]

Hoffman, J. E.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Ikeda, K.

Jacob, Z.

Jacques, F.

Joos, M.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Junge, C.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Kamioka, S.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Kane, D. M.

Karrai, K.

K. Karrai and I. Tiemann, “Interfacial shear force microscopy,” Phys. Rev. B 62, 13174–13181 (2000).
[Crossref]

Kawai, Y.

Kien, F. L.

K. P. Nayak, F. L. Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19, 14040–14050 (2011).
[Crossref] [PubMed]

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
[Crossref]

Knight, J. C.

Kordell, P. R.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Kozaki, S.

S. Kozaki, “Scattering of a gaussian beam by a homogeneous dielectric cylinder,” Journal of Applied Physics 53, 7195–7200 (1982).
[Crossref]

Krachmalnicoff, V.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Krueger, A.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Kuo, P. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
[Crossref]

Kupriyanov, D. V.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Laurat, J.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Leung, A.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical 125, 688–703 (2007).
[Crossref]

Levy, U.

Li, W.

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Liang, J.

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Little, D. J.

Lodahl, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

Loo, V.

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Maccagnani, P.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Mechelen, T. V.

Meinhardt, T.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Mitsch, R.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Mivelle, M.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Miyazaki, H. T.

Münchow, A. V.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Mutharasan, R.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical 125, 688–703 (2007).
[Crossref]

Nakajima, K.

Nayak, K. P.

Nic Chormaic, S.

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

O’Shea, D.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Oe, Y.

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Orozco, L. A.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Ozerov, I.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Painter, O.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Panzeri, F.

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Papencordt, D.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Peragut, F.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

Petersen, F.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Petersen, J.

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref] [PubMed]

Pichler, H.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

Pierrat, R.

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Proust, J.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Rauschenbeutel, A.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Ravets, S.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Rech, I.

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Reitz, D.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Rolston, S. L.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Sagué, G.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Sayrin, C.

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Schauffert, H.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Schell, A. W.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Schmidt, R.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Schneeweiss, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Shankar, P. M.

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical 125, 688–703 (2007).
[Crossref]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Sheremet, A. S.

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

Skoff, S. M.

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Solano, P.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Solomon, G. S.

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
[Crossref]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

Sugimoto, Y.

Takashima, H.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Takeuchi, S.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Tashima, T.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Tiemann, I.

K. Karrai and I. Tiemann, “Interfacial shear force microscopy,” Phys. Rev. B 62, 13174–13181 (2000).
[Crossref]

Tong, L.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express 12, 1025–1035 (2004).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Tran, T. T.

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

Truong, V. G.

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Vetsch, E.

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Volz, J.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref] [PubMed]

Warken, F.

Weber, M.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Wilde, Y. D.

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

V. Krachmalnicoff, D. Cao, A. Cazé, E. Castanié, R. Pierrat, N. Bardou, S. Collin, R. Carminati, and Y. D. Wilde, “Towards a full characterization of a plasmonic nanostructure with a fluorescent near-field probe,” Opt. Express 21, 11536–11545 (2013).
[Crossref] [PubMed]

Wong-Campos, J. D.

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Yalla, R.

Zoller, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

ACS Photonics (2)

A. W. Schell, H. Takashima, T. T. Tran, I. Aharonovich, and S. Takeuchi, “Coupling quantum emitters in 2d materials with tapered fibers,” ACS Photonics 4, 761–767 (2017).
[Crossref]

D. Cao, A. Cazé, M. Calabrese, R. Pierrat, N. Bardou, S. Collin, R. Carminati, V. Krachmalnicoff, and Y. De Wilde, “Mapping the radiative and the apparent nonradiative local density of states in the near field of a metallic nanoantenna,” ACS Photonics 2, 189–193 (2015).
[Crossref]

AIP Advances (1)

J. E. Hoffman, S. Ravets, J. A. Grover, P. Solano, P. R. Kordell, J. D. Wong-Campos, L. A. Orozco, and S. L. Rolston, “Ultrahigh transmission optical nanofibers,” AIP Advances 4, 067124 (2014).
[Crossref]

Appl. Phys. Lett. (1)

W. Li, J. Du, V. G. Truong, and S. Nic Chormaic, “Optical nanofiber-based cavity induced by periodic air-nanohole arrays,” Appl. Phys. Lett. 110, 253102 (2017).
[Crossref]

Applied Physics Letters (1)

L. Liebermeister, F. Petersen, A. V. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Journal of Applied Physics (1)

S. Kozaki, “Scattering of a gaussian beam by a homogeneous dielectric cylinder,” Journal of Applied Physics 53, 7195–7200 (1982).
[Crossref]

Journal of Modern Optics (1)

A. Gulinatti, I. Rech, F. Panzeri, C. Cammi, P. Maccagnani, M. Ghioni, and S. Cova, “New silicon SPAD technology for enhanced red-sensitivity, high-resolution timing and system integration,” Journal of Modern Optics 59, 1489–1499 (2012).
[Crossref]

Nature (2)

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473 (2017).
[Crossref] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426, 816 (2003).
[Crossref] [PubMed]

Nature Communications (1)

P. S. Kuo, J. Bravo-Abad, and G. S. Solomon, “Second-harmonic generation using -quasi-phasematching in a gaas whispering-gallery-mode microcavity,” Nature Communications 5, 3109 (2014).
[Crossref]

New Journal of Physics (1)

K. P. Nayak and K. Hakuta, “Single atoms on an optical nanofibre,” New Journal of Physics 10, 053003 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Optica (1)

Optics Communications (1)

F. L. Kien, J. Liang, K. Hakuta, and V. Balykin, “Field intensity distributions and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Optics Communications 242, 445–455 (2004).
[Crossref]

Phys. Rev. A (1)

S. M. Skoff, D. Papencordt, H. Schauffert, B. C. Bayer, and A. Rauschenbeutel, “Optical-nanofiber-based interface for single molecules,” Phys. Rev. A 97, 043839 (2018).
[Crossref]

Phys. Rev. Applied (2)

M. Joos, C. Ding, V. Loo, G. Blanquer, E. Giacobino, A. Bramati, V. Krachmalnicoff, and Q. Glorieux, “Polarization control of linear dipole radiation using an optical nanofiber,” Phys. Rev. Applied 9, 064035 (2018).
[Crossref]

D. Bouchet, M. Mivelle, J. Proust, B. Gallas, I. Ozerov, M. F. Garcia-Parajo, A. Gulinatti, I. Rech, Y. De Wilde, N. Bonod, V. Krachmalnicoff, and S. Bidault, “Enhancement and inhibition of spontaneous photon emission by resonant silicon nanoantennas,” Phys. Rev. Applied 6, 064016 (2016).
[Crossref]

Phys. Rev. B (2)

K. Karrai and I. Tiemann, “Interfacial shear force microscopy,” Phys. Rev. B 62, 13174–13181 (2000).
[Crossref]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high-q photonic crystal microcavity,” Phys. Rev. B 70, 081306 (2004).
[Crossref]

Phys. Rev. Lett. (2)

N. V. Corzo, B. Gouraud, A. Chandra, A. Goban, A. S. Sheremet, D. V. Kupriyanov, and J. Laurat, “Large bragg reflection from one-dimensional chains of trapped atoms near a nanoscale waveguide,” Phys. Rev. Lett. 117, 133603 (2016).
[Crossref] [PubMed]

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel, “Optical interface created by laser-cooled atoms trapped in the evanescent field surrounding an optical nanofiber,” Phys. Rev. Lett. 104, 203603 (2010).
[Crossref] [PubMed]

Phys. Rev. X (1)

C. Sayrin, C. Junge, R. Mitsch, B. Albrecht, D. O’Shea, P. Schneeweiss, J. Volz, and A. Rauschenbeutel, “Nanophotonic optical isolator controlled by the internal state of cold atoms,” Phys. Rev. X 5, 041036 (2015).

Science (1)

J. Petersen, J. Volz, and A. Rauschenbeutel, “Chiral nanophotonic waveguide interface based on spin-orbit interaction of light,” Science 346, 67–71 (2014).
[Crossref] [PubMed]

Scientific Reports (1)

A. W. Schell, H. Takashima, S. Kamioka, Y. Oe, M. Fujiwara, O. Benson, and S. Takeuchi, “Highly efficient coupling of nanolight emitters to a ultra-wide tunable nanofibre cavity,” Scientific Reports 5, 9619 (2015).
[Crossref] [PubMed]

Sensors and Actuators B: Chemical (1)

A. Leung, P. M. Shankar, and R. Mutharasan, “A review of fiber-optic biosensors,” Sensors and Actuators B: Chemical 125, 688–703 (2007).
[Crossref]

Surface Science Reports (1)

R. Carminati, A. Cazé, D. Cao, F. Peragut, V. Krachmalnicoff, R. Pierrat, and Y. D. Wilde, “Electromagnetic density of states in complex plasmonic systems,” Surface Science Reports 70, 1–41 (2015).
[Crossref]

Other (1)

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods(World Scientific, 1990).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of our fluorescence scanning probe apparatus. The confocal microscope is focused on a fluorescent bead grafted on the AFM tip. Scanning is done by moving the nanofiber with closed-loop piezoelectric actuators.
Fig. 2
Fig. 2 Fluorescence signal in counts/s (red squares) and frequency shift Δ f in Hz (blue dots) along the x-axis, when (a) the tip is z = 2770 nm above the nanofiber, and (b) when we detect the first contact on the nanofiber at z = 0 nm. The inset highlights that the maximum of fluorescence does not coincide with the tip-fiber contact.
Fig. 3
Fig. 3 Fluorescence signal over 36 μm2 in the xz-plane; both axes have the same scale. The red dashed circles indicates the nanofiber position. In (a) the excitation beam is polarized parallel to the nanofiber (along y-axis), and in (c) perpendidular to it (along x-axis); pixels are 62 nm wide and 50 nm high ( 8 × 5 data binning). z = 0 are set when the tip touches the nanofiber and z-axes are scaled using the actuator calibration. Using Mie theory, (b) and (d) show the calculated intensity of the electric field for the same polarizations respectively, this time z = 0 is at the surface of the nanofiber.
Fig. 4
Fig. 4 (a) Part of figure 3(a) showing where we locate the maximum of several peaks (red dot) from Fig. 3(a). These positions are plotted in (b) (red circles) together with the theoretical positions (blue solid lines), as a function of their relative distance Δ x to the central peak, assuming the experimental distance probe-nanofiber z natively matches the theoretical axis z. (c) Same graph as (b) plotted with the actual probe-fiber distance. The correction Δ z applied to z-axis is shown in inset.

Metrics