Abstract

X-ray transmittance and backscatter imaging are important methods for detecting drugs and plastic explosives in the security-inspection field. In this study, we developed an analytical model based on Geant4 toolkit and verified it by measuring the energy spectrum and backscatter images. According to the model, we analyzed the imaging contrasts to detect concealed contrabands. The results show that the backscatter contrasts are significantly better than those of the transmission, especially in thinner organic materials. However, for shelters with strong absorption and scattering, the gaps become smaller. In addition, the variations in the contrasts with thickness appear to linearly increase in the transmittance imaging and nonlinearly grow until saturation in the backscatter imaging. Compared with traditional methods, our model, which is more accurate and complete, employs energetically distributed X-rays, instead of monochromatic X-rays, and involves multiple scattering effects. By using this method, we cannot only calculate and analyze the image characteristics of large amounts of contrabands in various system structures but also design and optimize instruments specially used to detect drugs and explosives.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Snapshot fan beam coded aperture coherent scatter tomography

Mehadi Hassan, Joel A. Greenberg, Ikenna Odinaka, and David J. Brady
Opt. Express 24(16) 18277-18289 (2016)

Snapshot molecular imaging using coded energy-sensitive detection

Joel A. Greenberg, Kalyani Krishnamurthy, and David Brady
Opt. Express 21(21) 25480-25491 (2013)

Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum

Adrian Sarapata, Marian Willner, Marco Walter, Thomas Duttenhofer, Konradin Kaiser, Pascal Meyer, Christian Braun, Alexander Fingerle, Peter B. Noël, Franz Pfeiffer, and Julia Herzen
Opt. Express 23(1) 523-535 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Sarapata, M. Willner, M. Walter, T. Duttenhofer, K. Kaiser, P. Meyer, C. Braun, A. Fingerle, P. B. Noël, F. Pfeiffer, and J. Herzen, “Quantitative imaging using high-energy X-ray phase-contrast CT with a 70 kVp polychromatic X-ray spectrum,” Opt. Express 23(1), 523–535 (2015).
    [Crossref]
  2. V. S. K. Yokhana, B. D. Arhatari, T. E. Gureyev, and B. Abbey, “Soft-tissue differentiation and bone densitometry via energy-discriminating X-ray microCT,” Opt. Express 25(23), 29328–29341 (2017).
    [Crossref]
  3. X. Liu, Q. M. Liao, and H. K. Wang, “In vivo X-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
    [Crossref]
  4. D. Shedlock, T. Edwards, and C. Toh, “X-ray backscatter imaging for aerospace applications,” in AIP Conference Proceedings, Vol. 1335. (American Institute of Physics, 2011), pp: 509–516.
  5. C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
    [Crossref]
  6. J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
    [Crossref]
  7. V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
    [Crossref]
  8. A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
    [Crossref]
  9. A. Chalmers, “Applications of backscatter X-ray imaging sensors for homeland defense,” Proc. SPIE 5071, 388–396 (2003).
    [Crossref]
  10. A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
    [Crossref]
  11. J. L. Glover and L. T. Hudson, “A method for organic/inorganic differentiation using an X-ray forward/ backscatter personnel scanner,” XRay Spectrom. 42(6), 531–536 (2013).
    [Crossref]
  12. J. van den Heuvel and F. Fiore, “Simulation study of X-ray backscatter imaging of pressure-plate improvised explosive devices,” Proc. SPIE 8357, 835716 (2012).
    [Crossref]
  13. Geant4 Collaboration, Physics reference manual, release 10.4 (European Organization for Nuclear Research, 2017), Chap. 5–8.
  14. A. H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Phys. Rev. 21(5), 483–502 (1923).
    [Crossref]
  15. J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
    [Crossref]
  16. A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
    [Crossref]
  17. R. M. Kippen, “The Geant low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes,” New Astron. Rev. 48(1-4), 221–225 (2004).
    [Crossref]
  18. G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
    [Crossref]
  19. D. E. Cullen, J. H. Hubbell, and L. Kissel, “Epdl97: the evaluated photon data library, 97 version,” Tech. rep., Lawrence Livermore National Lab., CA (United States) (1997).
  20. NIST, Physical Measurement Laboratory, “X-ray form factor, attenuation, and scattering tables,” https://physics.nist.gov/PhysRefData/FFast/html/form.html .

2017 (1)

2016 (1)

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

2015 (1)

2013 (2)

X. Liu, Q. M. Liao, and H. K. Wang, “In vivo X-ray luminescence tomographic imaging with single-view data,” Opt. Lett. 38(22), 4530–4533 (2013).
[Crossref]

J. L. Glover and L. T. Hudson, “A method for organic/inorganic differentiation using an X-ray forward/ backscatter personnel scanner,” XRay Spectrom. 42(6), 531–536 (2013).
[Crossref]

2012 (1)

J. van den Heuvel and F. Fiore, “Simulation study of X-ray backscatter imaging of pressure-plate improvised explosive devices,” Proc. SPIE 8357, 835716 (2012).
[Crossref]

2010 (3)

A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
[Crossref]

A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
[Crossref]

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

2007 (1)

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

2004 (1)

R. M. Kippen, “The Geant low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes,” New Astron. Rev. 48(1-4), 221–225 (2004).
[Crossref]

2003 (1)

A. Chalmers, “Applications of backscatter X-ray imaging sensors for homeland defense,” Proc. SPIE 5071, 388–396 (2003).
[Crossref]

1998 (1)

C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
[Crossref]

1975 (1)

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

1923 (1)

A. H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Phys. Rev. 21(5), 483–502 (1923).
[Crossref]

Abbey, B.

Arhatari, B. D.

Boyer, C. N.

C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
[Crossref]

Braun, C.

Briggs, E. A.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Brown, R. T.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Chalmers, A.

A. Chalmers, “Applications of backscatter X-ray imaging sensors for homeland defense,” Proc. SPIE 5071, 388–396 (2003).
[Crossref]

Chen, Y. F.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Cirrone, G. A. P.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Compton, A. H.

A. H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Phys. Rev. 21(5), 483–502 (1923).
[Crossref]

Cromer, D. T.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Cuttone, G.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Di Rosa, F.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Duttenhofer, T.

Ferrand, G.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Fingerle, A.

Fiore, F.

J. van den Heuvel and F. Fiore, “Simulation study of X-ray backscatter imaging of pressure-plate improvised explosive devices,” Proc. SPIE 8357, 835716 (2012).
[Crossref]

Gertsenshteyn, M.

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

Glover, J. L.

J. L. Glover and L. T. Hudson, “A method for organic/inorganic differentiation using an X-ray forward/ backscatter personnel scanner,” XRay Spectrom. 42(6), 531–536 (2013).
[Crossref]

Grubsky, V.

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

Gureyev, T. E.

Herzen, J.

Holland, G. E.

C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
[Crossref]

Howerton, R. J.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Huang, S. L.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Hubbell, J. H.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Hudson, L. T.

J. L. Glover and L. T. Hudson, “A method for organic/inorganic differentiation using an X-ray forward/ backscatter personnel scanner,” XRay Spectrom. 42(6), 531–536 (2013).
[Crossref]

Ivanchenko, V. N.

A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
[Crossref]

Jannson, T.

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

Kaiser, K.

Kippen, R. M.

R. M. Kippen, “The Geant low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes,” New Astron. Rev. 48(1-4), 221–225 (2004).
[Crossref]

Knobloch, J.

A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
[Crossref]

Lalleman, A. S.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Lechner, A.

A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
[Crossref]

Liao, Q. M.

Liu, X.

Meyer, P.

Mougel, F.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Mu, B. Z.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Noël, P. B.

Pandola, L.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Paulus, C.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Pfeiffer, F.

Pierron, N. B.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Romano, F.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Rosse, B.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Sandhu, B. S.

A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
[Crossref]

Sarapata, A.

Savant, G.

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

Seely, J. F.

C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
[Crossref]

Sharma, A.

A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
[Crossref]

Singh, B.

A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
[Crossref]

Tabary, J.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Thfoin, I.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

van den Heuvel, J.

J. van den Heuvel and F. Fiore, “Simulation study of X-ray backscatter imaging of pressure-plate improvised explosive devices,” Proc. SPIE 8357, 835716 (2012).
[Crossref]

Veigele, W. J.

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

Verger, L.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Walter, M.

Wang, H. K.

Wang, X.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Willner, M.

Wrobel, R.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

Xu, J.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Yokhana, V. S. K.

Zhan, Q.

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

Zhang, Q.

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Appl. Radiat. Isot. (1)

A. Sharma, B. S. Sandhu, and B. Singh, “Incoherent scattering of gamma photons for non-destructive tomographic inspection of pipeline,” Appl. Radiat. Isot. 68(12), 2181–2188 (2010).
[Crossref]

J. Phys. Chem. Ref. Data (1)

J. H. Hubbell, W. J. Veigele, E. A. Briggs, R. T. Brown, D. T. Cromer, and R. J. Howerton, “Atomic form factors, incoherent scattering functions, and photon scattering cross sections,” J. Phys. Chem. Ref. Data 4(3), 471–538 (1975).
[Crossref]

New Astron. Rev. (1)

R. M. Kippen, “The Geant low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes,” New Astron. Rev. 48(1-4), 221–225 (2004).
[Crossref]

Nucl. Instrum. Methods Phys. Res. A (1)

G. A. P. Cirrone, G. Cuttone, F. Di Rosa, L. Pandola, F. Romano, and Q. Zhang, “Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds,” Nucl. Instrum. Methods Phys. Res. A 618(1-3), 315–322 (2010).
[Crossref]

Nucl. Instrum. Methods Phys. Res. B (1)

A. Lechner, V. N. Ivanchenko, and J. Knobloch, “Validation of recent Geant4 physics models for application in carbon ion therapy,” Nucl. Instrum. Methods Phys. Res. B 268(14), 2343–2354 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

A. H. Compton, “A quantum theory of the scattering of X-rays by light elements,” Phys. Rev. 21(5), 483–502 (1923).
[Crossref]

Proc. SPIE (3)

A. Chalmers, “Applications of backscatter X-ray imaging sensors for homeland defense,” Proc. SPIE 5071, 388–396 (2003).
[Crossref]

J. van den Heuvel and F. Fiore, “Simulation study of X-ray backscatter imaging of pressure-plate improvised explosive devices,” Proc. SPIE 8357, 835716 (2012).
[Crossref]

V. Grubsky, M. Gertsenshteyn, T. Jannson, and G. Savant, “Non-scanning X-ray backscattering inspection systems based on X-ray focusing,” Proc. SPIE 6540, 65401N (2007).
[Crossref]

Rev. Sci. Instrum. (2)

C. N. Boyer, G. E. Holland, and J. F. Seely, “Portable hard X-ray source for nondestructive testing and medical imaging,” Rev. Sci. Instrum. 69(6), 2524–2530 (1998).
[Crossref]

J. Xu, X. Wang, Q. Zhan, S. L. Huang, Y. F. Chen, and B. Z. Mu, “A novel lobster-eye imaging system based on Schmidt-type objective for X-ray backscattering inspection,” Rev. Sci. Instrum. 87(7), 073103 (2016).
[Crossref]

XRay Spectrom. (1)

J. L. Glover and L. T. Hudson, “A method for organic/inorganic differentiation using an X-ray forward/ backscatter personnel scanner,” XRay Spectrom. 42(6), 531–536 (2013).
[Crossref]

Other (5)

Geant4 Collaboration, Physics reference manual, release 10.4 (European Organization for Nuclear Research, 2017), Chap. 5–8.

A. S. Lalleman, G. Ferrand, B. Rosse, I. Thfoin, R. Wrobel, J. Tabary, N. B. Pierron, F. Mougel, C. Paulus, and L. Verger, “A dual X-ray backscatter system for detecting explosives: image and discrimination of a suspicious content,” in Proceedings of IEEE Nuclear Science Symposium and Medical Imaging Conference (IEEE, 2011), pp. 299–304.
[Crossref]

D. Shedlock, T. Edwards, and C. Toh, “X-ray backscatter imaging for aerospace applications,” in AIP Conference Proceedings, Vol. 1335. (American Institute of Physics, 2011), pp: 509–516.

D. E. Cullen, J. H. Hubbell, and L. Kissel, “Epdl97: the evaluated photon data library, 97 version,” Tech. rep., Lawrence Livermore National Lab., CA (United States) (1997).

NIST, Physical Measurement Laboratory, “X-ray form factor, attenuation, and scattering tables,” https://physics.nist.gov/PhysRefData/FFast/html/form.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Schematic of the scattering process. IP: incident photons, SBS: single backscattering, SFS: single forward scattering, MBS: multiple backscattering, MFS: multiple forward scattering, and TP: transmitted photons.
Fig. 2
Fig. 2 Geometrical simulation model. The PXR is generated by the interaction between e- and W target with φ = 20°. θ and d represent the scattering angle and thickness of the samples, respectively. Attenuation and scattering occur when the sample is radiated with a PXR beam, and the photons are recorded using the backscatter and transmittance detectors.
Fig. 3
Fig. 3 The experimental setup of X-ray imaging and spectral measurement.
Fig. 4
Fig. 4 Simulated and measured radiation spectra of an X-ray tube at 160 kV.
Fig. 5
Fig. 5 Simulated and experimental contrasts of the PMMA and flour. (a) The PMMA is sheltered by a 1-mm-thick Al sheet. (b) The PMMA is sheltered by a 1-mm-thick Fe sheet. (c) The flour is sheltered by a 1-mm-thick Al sheet. (d) The flour is sheltered by a 1-mm-thick Fe sheet. The error bars represent the standard deviations measured at 160 kV and three different current (2.5, 5, and 7.5 mA) of the X-ray tube.
Fig. 6
Fig. 6 Simulated contrasts of caffeine, cocaine, and HMX relative to flour without any shelter for the transmittance and backscatter imaging modes. (a) Transmittance imaging mode. (b) Backscatter imaging mode.
Fig. 7
Fig. 7 Simulated contrasts of the samples sheltered by an Al sheet for the transmittance imaging mode. (a) Contrast between four samples and Al sheet. (b) Contrasts of caffeine, cocaine, and HMX relative to the flour.
Fig. 8
Fig. 8 Simulated contrasts of the samples sheltered by an Al sheet for backscatter imaging mode. (a) Contrast between four samples and Al sheet. (b) Contrasts of caffeine, cocaine, and HMX relative to the flour.
Fig. 9
Fig. 9 Simulated contrasts of the samples sheltered by a Fe sheet for the transmittance imaging mode. (a) Contrast between four samples and the Fe sheet. (b) Contrasts of caffeine, cocaine, and HMX relative to the flour.
Fig. 10
Fig. 10 Simulated contrasts of the samples sheltered by a Fe sheet for the backscatter imaging mode. (a) Contrast between four samples and the Fe sheet. (b) Contrasts of caffeine, cocaine, and HMX relative to the flour.
Fig. 11
Fig. 11 Simulated radiation spectrum of the X-ray tube with a 1-mm Fe filter at 160 kV and transmittance of the filter.

Tables (1)

Tables Icon

Table 1 Physical and chemical parameters of the samples

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E S = E 1+α( 1cosθ )
d σ KN dΩ = r e 2 2 [ 1 1+α( 1cosθ ) ] 2 [ 1+ cos 2 θ+ α 2 ( 1cosθ ) 2 1+α( 1cosθ ) ]
I= I 0 exp( μρx )
σ( E )= σ ion + σ bre + σ pho + σ com + σ ray
log[ σ( E ) ]=log( σ 1 ) log( E 2 )log( E ) log( E 2 )log( E 1 ) +log( σ 2 ) log( E )log( E 1 ) log( E 2 )log( E 1 )
P( ε,q )=Φ( ε )×F( q )
q=E× sin 2 ( θ 2 )
Φ( ε )[ 1 ε +ε ][ 1 ε 1+ ε 2 sin 2 θ ]
K= I max I min I max + I min

Metrics