Abstract

A new design of photonic crystal (PhC) for optical sensing using guided mode resonance (GMR) is presented. We theoretically show that angular sensitivity is inversely proportional to the group velocity of the probed mode and can be made arbitrarily high in a properly designed PhC. PhCs made in polycrystalline diamond on insulator are fabricated. The angular sensitivity dependence is validated. We measured modes with group velocity of c/80 at a wavelength of 800 nm. A sensitivity in the order of 500 ° per refractive index unit is inferred, a value much larger than the one usually encountered in PhCs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis

Wentao Qiu, Abdoulaye Ndao, Huihui Lu, Maria-Pilar Bernal, and Fadi Issam Baida
Opt. Express 24(18) 20196-20209 (2016)

General recipe for flatbands in photonic crystal waveguides

Omer Khayam and Henri Benisty
Opt. Express 17(17) 14634-14648 (2009)

Design of an optofluidic biosensor using the slow-light effect in photonic crystal structures

F. Hosseinibalam, S. Hassanzadeh, A. Ebnali-Heidari, and C. Karnutsch
Appl. Opt. 51(5) 568-576 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” Journal of Optics 20, 073004 (2018).
    [Crossref]
  2. J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).
  3. Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19, 10029–10040 (2011).
    [Crossref] [PubMed]
  4. M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
    [Crossref]
  5. B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
    [Crossref]
  6. P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
    [Crossref]
  7. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Analytical Chemistry 79, 4729–4735 (2007).
    [Crossref] [PubMed]
  8. E. Hallynck and P. Bienstman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010).
    [Crossref] [PubMed]
  9. A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
    [Crossref] [PubMed]
  10. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [Crossref] [PubMed]
  11. C. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik 122, 1881–1884 (2011).
    [Crossref]
  12. X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of al-based device in optimal structure,” Appl. Opt. 54, 1548–1554 (2015).
    [Crossref] [PubMed]
  13. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020–1028 (2008).
    [Crossref] [PubMed]
  14. R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved bloch surface wave biosensors,” Opt. Express 22, 23202–23214 (2014).
    [Crossref] [PubMed]
  15. C. Nicolaou, W. T. Lau, R. Gad, H. Akhavan, R. Schilling, and O. Levi, “Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors,” Opt. Express 21, 31698–31712 (2013).
    [Crossref]
  16. C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
    [Crossref]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
    [Crossref]
  18. X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
    [Crossref]
  19. C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
    [Crossref] [PubMed]

2018 (1)

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” Journal of Optics 20, 073004 (2018).
[Crossref]

2016 (1)

2015 (2)

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of al-based device in optimal structure,” Appl. Opt. 54, 1548–1554 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (2)

C. Nicolaou, W. T. Lau, R. Gad, H. Akhavan, R. Schilling, and O. Levi, “Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors,” Opt. Express 21, 31698–31712 (2013).
[Crossref]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

2012 (1)

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

2011 (2)

Z. Yu and S. Fan, “Extraordinarily high spectral sensitivity in refractive index sensors using multiple optical modes,” Opt. Express 19, 10029–10040 (2011).
[Crossref] [PubMed]

C. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik 122, 1881–1884 (2011).
[Crossref]

2010 (3)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

E. Hallynck and P. Bienstman, “Photonic crystal biosensor based on angular spectrum analysis,” Opt. Express 18, 18164–18170 (2010).
[Crossref] [PubMed]

2009 (1)

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

2008 (1)

2007 (2)

1999 (1)

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Akhavan, H.

Aldinger, U.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Analytical Chemistry 79, 4729–4735 (2007).
[Crossref] [PubMed]

Altug, H.

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

Anopchenko, A.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved bloch surface wave biosensors,” Opt. Express 22, 23202–23214 (2014).
[Crossref] [PubMed]

Baets, R.

Bartolozzi, I.

Bergonzo, P.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Bienstman, P.

Blin, C.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

Boucaud, P.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Chang, T.-Y.

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

Checoury, X.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Chen, C.

Danz, N.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved bloch surface wave biosensors,” Opt. Express 22, 23202–23214 (2014).
[Crossref] [PubMed]

Diekmann, S.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Dündar, M. A.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Fan, S.

Fan, X.

Frascella, F.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Gad, R.

Gesset, C.

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Girard, H.

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Girard, H. A.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

Hallynck, E.

Han, Z.

He, S.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Hu, C.

C. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik 122, 1881–1884 (2011).
[Crossref]

Huang, M.

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Joannopoulos, J.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).

Johnson, S.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Karouta, F.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Analytical Chemistry 79, 4729–4735 (2007).
[Crossref] [PubMed]

Krauss, T. F.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” Journal of Optics 20, 073004 (2018).
[Crossref]

Kurdi, M. E.

Lau, W. T.

Levi, O.

Maillart, E.

Meade, R.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).

Michelotti, F.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved bloch surface wave biosensors,” Opt. Express 22, 23202–23214 (2014).
[Crossref] [PubMed]

Munzert, P.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Neel, D.

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Nicolaou, C.

Nötzel, R.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Pfeifer, P.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Pitruzzello, G.

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” Journal of Optics 20, 073004 (2018).
[Crossref]

Ricciardi, S.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Rivolo, P.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Rizzo, R.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

R. Rizzo, N. Danz, F. Michelotti, E. Maillart, A. Anopchenko, and C. Wächter, “Optimization of angularly resolved bloch surface wave biosensors,” Opt. Express 22, 23202–23214 (2014).
[Crossref] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Saada, S.

C. Blin, Z. Han, H. A. Girard, P. Bergonzo, P. Boucaud, M. E. Kurdi, S. Saada, S. Sauvage, and X. Checoury, “Surface-sensitive diamond photonic crystals for high-performance gas detection,” Opt. Lett. 41, 4360–4363 (2016).
[Crossref] [PubMed]

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Sauvage, S.

Schacht, E.

Schilling, R.

Schwotzer, G.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Shu, X.

Sinibaldi, A.

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Steinrücke, P.

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Sun, X.

van der Heijden, R. W.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Vos, K. D.

Wächter, C.

Wang, B.

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

White, I. M.

Winn, J.

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).

Yanik, A. A.

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

Yu, Z.

Advanced Optical Materials (1)

C. Blin, X. Checoury, H. A. Girard, C. Gesset, S. Saada, P. Boucaud, and P. Bergonzo, “Optical analysis of p-type surface conductivity in diamond with slotted photonic crystals,” Advanced Optical Materials 1, 963–970 (2013).
[Crossref]

Anal. Bioanal. Chem. (1)

A. Sinibaldi, A. Anopchenko, R. Rizzo, N. Danz, P. Munzert, P. Rivolo, F. Frascella, S. Ricciardi, and F. Michelotti, “Angularly resolved ellipsometric optical biosensing by means of Bloch surface waves,” Anal. Bioanal. Chem. 407, 3965–3974 (2015).
[Crossref] [PubMed]

Analytical Chemistry (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Analytical Chemistry 79, 4729–4735 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Checoury, D. Neel, P. Boucaud, C. Gesset, H. Girard, S. Saada, and P. Bergonzo, “Nanocrystalline diamond photonics platform with high quality factor photonic crystal cavities,” Appl. Phys. Lett. 101, 171115 (2012).
[Crossref]

Applied Physics Letters (1)

B. Wang, M. A. Dündar, R. Nötzel, F. Karouta, S. He, and R. W. van der Heijden, “Photonic crystal slot nanobeam slow light waveguides for refractive index sensing,” Applied Physics Letters 97, 151105 (2010).
[Crossref]

Computer Physics Communications (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Computer Physics Communications 181, 687–702 (2010).
[Crossref]

Journal of Optics (1)

G. Pitruzzello and T. F. Krauss, “Photonic crystal resonances for sensing and imaging,” Journal of Optics 20, 073004 (2018).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Optics Express (1)

M. Huang, A. A. Yanik, T.-Y. Chang, and H. Altug, “Sub-wavelength nanofluidics in photonic crystal sensors,” Optics Express 17, 24224–24233 (2009).
[Crossref]

Optik (1)

C. Hu, “Surface plasmon resonance sensor based on diffraction grating with high sensitivity and high resolution,” Optik 122, 1881–1884 (2011).
[Crossref]

Sensors and Actuators B: Chemical (1)

P. Pfeifer, U. Aldinger, G. Schwotzer, S. Diekmann, and P. Steinrücke, “Real time sensing of specific molecular binding using surface plasmon resonance spectroscopy,” Sensors and Actuators B: Chemical 54, 166–175 (1999).
[Crossref]

Other (1)

J. Joannopoulos, S. Johnson, J. Winn, and R. Meade, Photonic Crystals: Molding the Flow of Light - Second Edition(Princeton University, Princeton, NJ, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic view of the photonic crystal with light injection at θ polar angle and ϕ azimuthal angle. (b) Top: Schematic band diagram showing the dispersion curve of a resonant mode without (black) and with (green) a refractive index perturbation. Bottom: the angular shift when probed at a constant frequency with and without refractive index perturbation. (c) Schematic band diagram showing the dispersion curve of a low group velocity mode and its associated angular shift. The width of the resonances δ ω and refractive index shift Δn are identical for both cases but the slow mode has a larger angular shift and presents a wider angular resonance.
Fig. 2
Fig. 2 Illustration of the band folding. Two band diagrams along the Γ X direction are superimposed for two square lattice PhCs: a single-hole cell PhC of period a / 2 (dark red curve) and a four-hole cell PhC of period a (blue curve) with same radii, 0.14 a. The light red curve indicates how some modes originate from the folding of the modes of the single hole pattern PhC due to the smaller size of the Brillouin zone of size π / a along Γ X.
Fig. 3
Fig. 3 (a) Band diagram calculation for TE modes with Q factors expressed on a logarithmic color scale. The inset represents the fundamental cell and the Brillouin zone Γ , X and M. The fundamental cell has four holes organized along a square lattice. The radius of the three similar holes is 0.14 a, while the radius of the forth hole is 0.195 a. The thickness of the slab is 1.02 a. (b) Band diagram calculation for TE modes along the specific direction Γ J that makes an angle of 28° with the Γ X direction. The Q factors are represented on a linear scale with a maximum value of 5000 emphasizing a value about 2500 near the light line for the targeted low group velocity mode, i.e for ω 0.474 and k 0.37.
Fig. 4
Fig. 4 (a) Measured spectrum for azimuthal angle ϕ = 26 and polar angle θ = 23°. Inset on the left: Fano fit (orange line) of the resonance near a / λ = 0.55. Inset on the right: SEM image of the fabricated photonic crystal in polycrystalline diamond. (b) Band diagram of fabricated sample as measured in the specific interrogation direction ΓJ (26° from the Γ X direction). (c) Corresponding measured spectrum with data filtered of Fabry-Perot interferences. (d) Simulated band diagram for the corresponding structure.
Fig. 5
Fig. 5 Normalized energy of the mode as a function of the angle θ for various ϕ equal to 20°, 22°, 24°, 26°, 28° and 30°. Continuous lines correspond to the best polynomial fit and colors to the group velocity v g / c.
Fig. 6
Fig. 6 (a) Angle shift with the temperature for three different modes with three group velocities : v g / c = 0.08 (green squares), 0.04 (red circles) and 0.013 (purple triangles). (b) Angle shift as a function of the relative energy shift using same symbols as for Fig. (a). The dotted lines are linear fit to the data. The plain lines have a slope of 180 π c v g calculated from the unperturbed band diagram of corresponding mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ λ Δ ω ω 1 2 Δ ε E 2 d 3 r ε E 2 d 3 r Δ n n p e r t u r b e d r e g i o n ε E 2 d 3 r   ε E 2 d 3 r
k gmr ( ω ) = ω n ext c sin  θ
d k gmr ( ω ) = ω n ext c cos  θ d θ
Δ θ = 180 π c v g 1 n ext cos  θ Δ ω ω [   ]
S θ = 180 π c v g 1 n ext cos  θ Δ ω ω Δ n [   / RIU ]

Metrics