Abstract

The digital in-line particle holography suffers from speckle noise, for which considerable efforts have been devoted in order to mitigate it by designing post-processing algorithms. This paper proposes a novel approach, which mitigates the speckle noise by increasing the signal-to-noise ratio (SNR). It involves the joint design of optical systems and post-processing algorithms, and enhances the SNR by combining several holograms captured under different illumination angles. The experimental results show that the proposed scheme performs better than the normal scheme in terms of SNR and false-detection-ratio.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
In-line recording and off-axis viewing technique for holographic particle velocimetry

Hui Meng and Fazle Hussain
Appl. Opt. 34(11) 1827-1840 (1995)

Intrinsic speckle noise in in-line particle holography

Hui Meng, W. L. Anderson, Fazle Hussain, and David D. Liu
J. Opt. Soc. Am. A 10(9) 2046-2058 (1993)

High-aperture raster holography for particle imaging

Valery Zimin and Fazle Hussain
Opt. Lett. 19(15) 1158-1160 (1994)

References

  • View by:
  • |
  • |
  • |

  1. S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Lasers Eng. 32(7-8), 567–574 (2000).
    [Crossref]
  2. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
    [Crossref] [PubMed]
  3. P. Amsler, O. Stetzer, M. Schnaiter, E. Hesse, S. Benz, O. Moehler, and U. Lohmann, “Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements,” Appl. Opt. 48(30), 5811–5822 (2009).
    [Crossref] [PubMed]
  4. D. Nguyen, D. Honnery, and J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Exp. Fluids 50(4), 949–959 (2011).
    [Crossref]
  5. D. K. Singh and P. K. Panigrahi, “Improved digital holographic reconstruction algorithm for depth error reduction and elimination of out-of-focus particles,” Opt. Express 18(3), 2426–2448 (2010).
    [Crossref] [PubMed]
  6. T. Latychevskaia, F. Gehri, and H. W. Fink, “Depth-resolved holographic reconstructions by three-dimensional deconvolution,” Opt. Express 18(21), 22527–22544 (2010).
    [Crossref] [PubMed]
  7. J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
    [Crossref] [PubMed]
  8. H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
    [Crossref] [PubMed]
  9. H. Meng and F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7(1), 9–11 (1995).
    [Crossref]
  10. S. Ahmed, ““Product-Based Pulse Integration to Combat Noise Jamming,” IEEE T. AERO. ELEC,” SYS 50(3), 2109–2115 (2014).
  11. B. R. Mahafza, Radar Signal Analysis and Processing Using MATLAB (CRC, 2008).
  12. Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
    [Crossref]
  13. T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH, 2005).
  14. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  15. D. J. Brady, K. Choi, D. L. Marks, R. Horisaki, and S. Lim, “Compressive Holography,” Opt. Express 17(15), 13040–13049 (2009).
    [Crossref] [PubMed]
  16. G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
    [Crossref] [PubMed]
  17. L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
    [Crossref] [PubMed]
  18. M. Malek, D. Allano, S. Coëtmellec, and D. Lebrun, “Digital in-line holography: influence of the shadow density on particle field,” Opt. Express 12(10), 2270–2279 (2004).
    [Crossref] [PubMed]
  19. A. Nigam and P. K. Panigrahi, “Increase in effectiveness of holographic particle field reconstruction using superposition procedure,” Appl. Opt. 52(1), 377–387 (2013).
    [Crossref]
  20. D. K. Singh and P. K. Panigrahi, “Automatic threshold technique for holographic particle field characterization,” Appl. Opt. 51(17), 3874–3887 (2012).
    [Crossref] [PubMed]
  21. R. Gonzalez and R. Woods, Digital Image Processing (Pearson Education, 2007).
  22. A. Calabuig, J. Garcia, C. Ferreira, Z. Zalevsky, and V. Micó, “Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor,” J. Opt. Soc. Am. A 28(11), 2346–2358 (2011).
    [Crossref] [PubMed]
  23. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
    [Crossref] [PubMed]

2015 (1)

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

2014 (2)

L. Tian, J. Wang, and L. Waller, “3D differential phase-contrast microscopy with computational illumination using an LED array,” Opt. Lett. 39(5), 1326–1329 (2014).
[Crossref] [PubMed]

S. Ahmed, ““Product-Based Pulse Integration to Combat Noise Jamming,” IEEE T. AERO. ELEC,” SYS 50(3), 2109–2115 (2014).

2013 (2)

J. Gao, D. R. Guildenbecher, P. L. Reu, and J. Chen, “Uncertainty characterization of particle depth measurement using digital in-line holography and the hybrid method,” Opt. Express 21(22), 26432–26449 (2013).
[Crossref] [PubMed]

A. Nigam and P. K. Panigrahi, “Increase in effectiveness of holographic particle field reconstruction using superposition procedure,” Appl. Opt. 52(1), 377–387 (2013).
[Crossref]

2012 (1)

2011 (4)

2010 (2)

2009 (2)

2007 (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

2004 (1)

2000 (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Lasers Eng. 32(7-8), 567–574 (2000).
[Crossref]

1995 (2)

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

H. Meng and F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7(1), 9–11 (1995).
[Crossref]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Ahmed, S.

S. Ahmed, ““Product-Based Pulse Integration to Combat Noise Jamming,” IEEE T. AERO. ELEC,” SYS 50(3), 2109–2115 (2014).

Allano, D.

Amsler, P.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Benz, S.

Brady, D. J.

Calabuig, A.

Chen, D.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Chen, J.

Choi, K.

Coëtmellec, S.

Ferreira, C.

Fink, H. W.

Gao, J.

Garcia, J.

Gehri, F.

Guildenbecher, D. R.

Hesse, E.

Honnery, D.

D. Nguyen, D. Honnery, and J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Exp. Fluids 50(4), 949–959 (2011).
[Crossref]

Horisaki, R.

Hussain, F.

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

H. Meng and F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7(1), 9–11 (1995).
[Crossref]

Katz, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Kolner, C.

Latychevskaia, T.

Lebrun, D.

Li, X.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Lim, S.

Lohmann, U.

Ma, Y.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Malek, M.

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Marks, D. L.

Meng, H.

H. Meng and F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34(11), 1827–1840 (1995).
[Crossref] [PubMed]

H. Meng and F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7(1), 9–11 (1995).
[Crossref]

Micó, V.

Moehler, O.

Murata, S.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Lasers Eng. 32(7-8), 567–574 (2000).
[Crossref]

Nguyen, D.

D. Nguyen, D. Honnery, and J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Exp. Fluids 50(4), 949–959 (2011).
[Crossref]

Nigam, A.

A. Nigam and P. K. Panigrahi, “Increase in effectiveness of holographic particle field reconstruction using superposition procedure,” Appl. Opt. 52(1), 377–387 (2013).
[Crossref]

Panigrahi, P. K.

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Reu, P. L.

Schnaiter, M.

Sheng, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

Singh, D. K.

Soria, J.

D. Nguyen, D. Honnery, and J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Exp. Fluids 50(4), 949–959 (2011).
[Crossref]

Stetzer, O.

Sun, R.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Tian, L.

Tittel, F. K.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Waller, L.

Wang, J.

Yang, C.

Yasuda, N.

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Lasers Eng. 32(7-8), 567–574 (2000).
[Crossref]

Yu, G.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Yu, X.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Zalevsky, Z.

Zhang, J.

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Zheng, G.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

Y. Ma, X. Yu, G. Yu, X. Li, J. Zhang, D. Chen, R. Sun, and F. K. Tittel, “Multi-quartz-enhanced photoacoustic spectroscopy,” Appl. Phys. Lett. 107(2), 021106 (2015).
[Crossref]

Exp. Fluids (1)

D. Nguyen, D. Honnery, and J. Soria, “Measuring evaporation of micro-fuel droplets using magnified DIH and DPIV,” Exp. Fluids 50(4), 949–959 (2011).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (5)

Opt. Lasers Eng. (1)

S. Murata and N. Yasuda, “Potential of digital holography in particle measurement,” Opt. Lasers Eng. 32(7-8), 567–574 (2000).
[Crossref]

Opt. Lett. (3)

Phys. Fluids (1)

H. Meng and F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7(1), 9–11 (1995).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. U.S.A. 104(44), 17512–17517 (2007).
[Crossref] [PubMed]

SYS (1)

S. Ahmed, ““Product-Based Pulse Integration to Combat Noise Jamming,” IEEE T. AERO. ELEC,” SYS 50(3), 2109–2115 (2014).

Other (4)

B. R. Mahafza, Radar Signal Analysis and Processing Using MATLAB (CRC, 2008).

T. Kreis, Handbook of Holographic Interferometry Optical and Digital Methods (WILEY-VCH, 2005).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

R. Gonzalez and R. Woods, Digital Image Processing (Pearson Education, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (A) A light beam defined in Cartesian coordinate with relative angles (α, β, γ) corresponding to x, y, z axes. (B) On-axis illumination (solid line) and off-axis illumination (dashed line) of a particle (noted by p) at the object plane (OP) produce two images in the recording plane (RP), represented by point and circle, respectively. The distance between the two images can be determined by the following equation Δr = Δz•tanγ. (C) Δz>Δz’ results inΔr>Δr’.
Fig. 2
Fig. 2 The measurement process: scanning illumination angles and recording one hologram for each angle. N is the total number of illumination angle.
Fig. 3
Fig. 3 Raw images. (A) Captured image under off-axis illumination (α = π/2, γ = 0.025); (B) Captured image under on-axis illumination (α = π/2, γ = 0); (C) Intensity profile plotted along the red line in (A) and the green line in (B). (D) Linear relation between Δr and tanγ. The illumination angles corresponding to the blue dots are as follows: (π/2,-0.05), (π/2, −0.025), (π/2, 0), (π/2, 0.025) and (π/2, 0.05).
Fig. 4
Fig. 4 Two captured holograms under on-axis illumination (A) and off-axis illumination (B).
Fig. 5
Fig. 5 3D particle sample experimental results. (A) The holographic reconstructed result corresponding to the first layer of the 3D particle sample. (B) As (A), but showing the results from the proposed scheme. (C) Composite image showing (A) and (B) overlaid in different color bands. (D) Intensity profile plotted along the blue line in (A) and the red line in (B).
Fig. 6
Fig. 6 (A&B)The particle field images after applying a threshold to Fig. 5(A) and Fig. 5(B), respectively. (C) Magnified composite image showing (A) and (B) overlaid in different color bands.
Fig. 7
Fig. 7 BNC versus the number of holograms.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Aexp[ ik( xcosα+ycosβ ) ]exp( ikzcosγ )
cos 2 α+ cos 2 β+ cos 2 γ=1
Aexp( ikz )
E s,m ( ξ,η )= d x ' d y ' t( x ' , y ' ) h m (ξ x ' ,η y ' ,Δz)
h m (x,y,z)=exp[ ik( xcos α m +ycos β m ) ]exp( ikz 1 cos 2 α m cos 2 β m )
I m ( ξ,η )= | E s,m + E r,m | 2 = | E r,m ( ξ,η ) | 2 + | E s,m ( ξ,η ) | 2 + E s,m E r,m * ( ξ,η )+ E s,m * E r,m ( ξ,η )
sin( γ m )<NA
E s,m r ( ξ,η ) I m ( ξ,η ) E r,m ( ξ,η )
E r,m ( x,y,Δz )= dξdη E m,s r ( ξ,η ) h m + (xε,yη,Δz)
I r,m ( x,y,Δz )= | E r,m | 2
I r (x,y,Δz)= 1 N m=1 N I r,m ( x,y,Δz )
BNC= I bn,max I bn,min I bn,max + I bn,min
SNR= I p σ bn
I th =0.5 I ¯

Metrics