Abstract

An all-fiber seawater salinity sensor based on intracavity loss-modulated sensing in a fiber ring laser is proposed and experimentally demonstrated. An optical fiber multimode interferometer, which is based on single-mode-no-core-single-mode fiber structure, is cascaded with a fiber reflector and used as a reflected sensing head to enhance loss-modulated depth. It is inserted in a fiber ring laser and the intracavity loss-modulated salinity sensing is induced for the fiber laser’s output intensity. The salinity sensitivity is measured to be 0.1 W/‰ with a high signal-to-noise ratio more than 49 dB and narrow full width at half maximum less than 40 pm. The temperature cross-sensitivity characteristic and stability are also analyzed. Considering the errors from cross-sensitivity, stability and resolution of the photodetector, the detection limit of the sensor system is 0.0023 ‰ (0.0002 S/m), which is comparable to the most advanced commercial electronic salinity sensor.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling optical microfiber loops for seawater sensing

Shanshan Wang, Jing Wang, Guoxiang Li, and Limin Tong
Appl. Opt. 51(15) 3017-3023 (2012)

Salinity sensor based on polyimide-coated photonic crystal fiber

Chuang Wu, Bai-Ou Guan, Chao Lu, and Hwa-Yaw Tam
Opt. Express 19(21) 20003-20008 (2011)

All-fiber Mach–Zehnder interferometer for tunable two quasi-continuous points’ temperature sensing in seawater

Tianqi Liu, Jing Wang, Yipeng Liao, Xin Wang, and Shanshan Wang
Opt. Express 26(9) 12277-12290 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34(18), 3477–3480 (1995).
    [Crossref] [PubMed]
  2. G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
    [Crossref]
  3. Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).
  4. Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
    [Crossref]
  5. L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water salinity fiber sensor with selectable sensitivity using a liquid-fillable composite in-fiber Fabry-Perot cavity,” 7th International Symposium on High-Capacity Optical Networks and Enabling Technologies, 161–165 (2010).
    [Crossref]
  6. J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
    [Crossref]
  7. D. Z. Stupar, J. S. Bajić, A. V. Joža, B. M. Dakić, M. P. Slankamenac, M. B. Živanov, and E. Cibula, “Remote monitoring of water salinity by using side-polished fiber-optic U-shaped sensor,” 15th International Power Electronics and Motion Control Conference, LS4c.4–1 - LS4c.4–5 (2012).
    [Crossref]
  8. X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
    [Crossref]
  9. S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
    [Crossref]
  10. M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
    [Crossref]
  11. S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
    [Crossref] [PubMed]
  12. J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
    [Crossref]
  13. J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
    [Crossref]
  14. A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun. 234(1-6), 391–397 (2004).
    [Crossref]
  15. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Ligthw. Technol. 13(4), 615–627 (1995).
    [Crossref]
  16. Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
    [Crossref]
  17. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [Crossref] [PubMed]
  18. W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
    [Crossref] [PubMed]
  19. C. R. U. Kumari, D. Samiappan, T. R. Rao, and Tata Sudhakar, “Mach-Zehnder interferometer based high sensitive water salinity sensor for oceanographic applications,” 2016 IEEE Annual India Conference, (2016).
  20. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2017 (3)

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

2016 (4)

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

2015 (3)

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
[Crossref] [PubMed]

2013 (1)

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

2010 (1)

2009 (1)

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

2008 (1)

2004 (1)

A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun. 234(1-6), 391–397 (2004).
[Crossref]

1995 (2)

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Ligthw. Technol. 13(4), 615–627 (1995).
[Crossref]

X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34(18), 3477–3480 (1995).
[Crossref] [PubMed]

Alameh, K.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water salinity fiber sensor with selectable sensitivity using a liquid-fillable composite in-fiber Fabry-Perot cavity,” 7th International Symposium on High-Capacity Optical Networks and Enabling Technologies, 161–165 (2010).
[Crossref]

Andrés, M. V.

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Antonio-Lopez, J. E.

Bello-Jiménez, M. A.

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Castillo-Guzman, A.

Chen, Y. F.

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Duan, L.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Fabris, J. L.

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Fan, X.

Feng, J. C.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Fry, E. S.

Fu, S.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Fu, S. J.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Gusarov, A.

A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun. 234(1-6), 391–397 (2004).
[Crossref]

Guzman-Sepulveda, J. R.

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

Han, Q.

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Hernández-Arriaga, M. V.

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Kamikawachi, R. C.

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Liao, Y.

Liao, Y. P.

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

Liegeois, F.

A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun. 234(1-6), 391–397 (2004).
[Crossref]

Likamwa, P.

Liu, T. G.

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

López-Estopier, R.

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Lü, X. Y.

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

May-Arrioja, D. A.

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
[Crossref] [PubMed]

Muller, M.

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Nguyen, L. V.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water salinity fiber sensor with selectable sensitivity using a liquid-fillable composite in-fiber Fabry-Perot cavity,” 7th International Symposium on High-Capacity Optical Networks and Enabling Technologies, 161–165 (2010).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Ligthw. Technol. 13(4), 615–627 (1995).
[Crossref]

Possetti, G. R. C.

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Prevedello, C. L.

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Quan, X.

Rodríguez-Cobos, A.

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

Rong, F.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

Ruiz-Perez, V. I.

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

Sanchez-Mondragon, J. J.

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

Selvas-Aguilar, R.

Shi, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Ligthw. Technol. 13(4), 615–627 (1995).
[Crossref]

Su, G.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Su, G. H.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Torres-Cisneros, M.

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

Vasiliev, M.

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water salinity fiber sensor with selectable sensitivity using a liquid-fillable composite in-fiber Fabry-Perot cavity,” 7th International Symposium on High-Capacity Optical Networks and Enabling Technologies, 161–165 (2010).
[Crossref]

Wang, J.

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
[Crossref] [PubMed]

Wang, S.

Wang, S. S.

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

Wang, X.

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

S. Wang, Y. Liao, H. Yang, X. Wang, and J. Wang, “Modeling seawater salinity and temperature sensing based on directional coupler assembled by polyimide-coated micro/nanofibers,” Appl. Opt. 54(34), 10283–10289 (2015).
[Crossref] [PubMed]

Wang, Y.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Wang, Y. Y.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

White, I. M.

Xu, D.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Xu, D. G.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Xu, W.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

Yan, C.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Yan, D.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Yang, H.

Yang, H. J.

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

Yang, X.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

Yao, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Yao, J. Q.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Zhang, H.

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

Zhang, H. W.

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Zhao, J.

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

Appl. Opt. (2)

IEEE Photonics J. (3)

J. Shi, Y. Y. Wang, D. G. Xu, G. H. Su, H. W. Zhang, J. C. Feng, C. Yan, S. J. Fu, and J. Q. Yao, “Remote magnetic field sensor based on intracavity absorption of evanescent field,” IEEE Photonics J. 8(2), 1 (2016).
[Crossref]

Y. P. Liao, X. Wang, H. J. Yang, S. S. Wang, and J. Wang, “Resonant mode characteristics of microfiber knot-type ring resonator and its salinity sensing experiment,” IEEE Photonics J. 7(4), 6802308 (2015).

S. S. Wang, H. J. Yang, Y. P. Liao, X. Wang, and J. Wang, “High-sensitivity salinity and temperature sensing in seawater based on a microfiber directional coupler,” IEEE Photonics J. 8(4), 1 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (2)

J. R. Guzman-Sepulveda, V. I. Ruiz-Perez, M. Torres-Cisneros, J. J. Sanchez-Mondragon, and D. A. May-Arrioja, “Fiber optic sensor for high-sensitivity salinity measurement,” IEEE Photonics Technol. Lett. 25(23), 2323–2326 (2013).
[Crossref]

J. Shi, Y. Wang, D. Xu, H. Zhang, G. Su, L. Duan, C. Yan, D. Yan, S. Fu, and J. Yao, “Temperature sensor based on fiber ring laser with sagnac loop,” IEEE Photonics Technol. Lett. 28(7), 794–797 (2016).
[Crossref]

IEEE Sens. J. (1)

M. V. Hernández-Arriaga, M. A. Bello-Jiménez, A. Rodríguez-Cobos, R. López-Estopier, and M. V. Andrés, “High sensitivity refractive index sensor based on highly overcoupled tapered fiber-optic couplers,” IEEE Sens. J. 17(2), 333–339 (2017).
[Crossref]

J. Ligthw. Technol. (3)

Y. P. Liao, J. Wang, S. S. Wang, H. J. Yang, and X. Wang, “Simultaneous measurement of seawater temperature and salinity based on microfiber MZ interferometer with a knot resonator,” J. Ligthw. Technol. 34(23), 5378–5384 (2016).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Ligthw. Technol. 13(4), 615–627 (1995).
[Crossref]

X. Wang, J. Wang, S. S. Wang, and Y. P. Liao, “Fiber-optic salinity sensing with a panda-microfiber-based multimode interferometer,” J. Ligthw. Technol. 35(23), 5086–5091 (2017).
[Crossref]

Meas. Sci. Technol. (1)

G. R. C. Possetti, R. C. Kamikawachi, C. L. Prevedello, M. Muller, and J. L. Fabris, “Salinity measurement in water environment with a long period grating based interferometer,” Meas. Sci. Technol. 20(3), 034003 (2009).
[Crossref]

Opt. Commun. (1)

A. Gusarov and F. Liegeois, “Experimental study of a tunable fiber ring laser stability,” Opt. Commun. 234(1-6), 391–397 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators B Chem. (1)

Y. F. Chen, Q. Han, T. G. Liu, and X. Y. Lü, “Self-temperature-compensative refractometer based on singlemode–multimode–singlemode fiber structure,” Sens. Actuators B Chem. 212, 107–111 (2015).
[Crossref]

Sensors (Basel) (1)

W. Xu, J. Shi, X. Yang, D. Xu, F. Rong, J. Zhao, and J. Yao, “Improved numerical calculation of the single-mode-no-core-single-mode fiber structure using the fields far from cutoff approximation,” Sensors (Basel) 17(10), 2240 (2017).
[Crossref] [PubMed]

Other (3)

C. R. U. Kumari, D. Samiappan, T. R. Rao, and Tata Sudhakar, “Mach-Zehnder interferometer based high sensitive water salinity sensor for oceanographic applications,” 2016 IEEE Annual India Conference, (2016).

L. V. Nguyen, M. Vasiliev, and K. Alameh, “Water salinity fiber sensor with selectable sensitivity using a liquid-fillable composite in-fiber Fabry-Perot cavity,” 7th International Symposium on High-Capacity Optical Networks and Enabling Technologies, 161–165 (2010).
[Crossref]

D. Z. Stupar, J. S. Bajić, A. V. Joža, B. M. Dakić, M. P. Slankamenac, M. B. Živanov, and E. Cibula, “Remote monitoring of water salinity by using side-polished fiber-optic U-shaped sensor,” 15th International Power Electronics and Motion Control Conference, LS4c.4–1 - LS4c.4–5 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 The experimental setup of the fiber laser sensor.
Fig. 2
Fig. 2 (a) The package structure of the sensing head, (b) The structure of the SNCS fiber, (c) The SNCS fiber fixed on the protective structure, (d) a completed sensing probe.
Fig. 3
Fig. 3 (a) The reflection spectrum of the FBG and the salinity response characteristic of the sensing head, (b) The salinity responses of the output power at different pump power, the insert is the output power as pump power increases when the sensing head is in pure water.
Fig. 4
Fig. 4 (a) The output spectra of the fiber laser as the external salinity increases from pure water to 160.3195 ‰, (b) The salinity response of the output power, and (c) The SNR and relative intensity sensitivity of the sensor as the external salinity increases from pure water to 160.3195 ‰, the insets are the output spectra of the fiber laser measured in pure water and 160.3195 ‰, respectively.
Fig. 5
Fig. 5 The output spectra of the fiber laser sensor monitored over 200 minutes by fixing the external salinity at (a) pure water, (b) 65.7666 ‰, and (c) 128.0731 ‰, (d) 160.3195 ‰, respectively.
Fig. 6
Fig. 6 The stability of the fiber laser sensor.
Fig. 7
Fig. 7 The temperature response of the output power.

Tables (1)

Tables Icon

Table 1 Salinity Sensor Indicators

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T(λ)= i,j=1 M c i 2 c j 2 ×cos[( β i β j )L]
λ selfimaging =m n NCF D NCF 2 L
DL= R S

Metrics