Abstract

Narrowband high-temperature stable fiber Bragg gratings (FBGs) can be made by introducing a π-phase shift in the middle of a Type II periodic grating structure. This creates a passband inside the wavelength rejection band. During the inscription of Type II Bragg gratings broadband, optical loss is induced in the fiber core as a result of interaction between the inscription beam and the silica host. The amount of broadband loss will determine the passband’s spectral characteristics (bandwidth and loss).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Bragg grating inscription in various optical fibers with femtosecond infrared lasers and a phase mask

Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Ping Lu, Robert B. Walker, and Huimin Ding
Opt. Mater. Express 1(4) 754-765 (2011)

Low loss Type II regenerative Bragg gratings made with ultrafast radiation

Dan Grobnic, Cyril Hnatovsky, and Stephen J. Mihailov
Opt. Express 24(25) 28704-28712 (2016)

Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Bogue, “Fibre optic sensors: a review of today’s applications,” Sens. Rev. 31(4), 304–309 (2011).
    [Crossref]
  2. A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
    [Crossref]
  3. D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
    [Crossref] [PubMed]
  4. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  5. S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
    [Crossref] [PubMed]
  6. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
    [Crossref]
  7. D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
    [Crossref]
  8. D. Grobnic, S. J. Mihailov, and R. B. Walker, “Narrowband High Temperature Sensor Based on Type II laser Cavity Made with Ultrafast Radiation,” in Advanced Photonics Conference (Optical Society of America2015), paper BW2D.5.
  9. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24(16), 1091–1093 (1999).
    [Crossref] [PubMed]
  10. A. Rosenthal, D. Razansky, and V. Ntziachristos, “High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating,” Opt. Lett. 36(10), 1833–1835 (2011).
    [Crossref] [PubMed]
  11. D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
    [Crossref] [PubMed]
  12. D. C. Hutchings, F. A. P. Tooley, and D. A. Russell, “Unidirectional operation of a ring laser using an absorbing Fabry-Perot filter,” Opt. Lett. 12(5), 322–324 (1987).
    [Crossref] [PubMed]
  13. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask,” Opt. Express 26(18), 23550–23564 (2018).
    [Crossref] [PubMed]
  14. C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Birefringent π-phase-shifted fiber Bragg gratings for sensing at 1000°C fabricated using an infrared femtosecond laser and a phase mask,” the J. Lightwave Technol. 36(23), 5697–5703 (2018).
  15. C. Chen, Y.-S. Yu, R. Yang, L. Wang, J.-C. Guo, Q.-D. Chen, and H.-B. Sun, “Monitoring thermal effect in femtosecond laser interaction with glass by Fiber Bragg Grating,” J. Lightwave Technol. 29(14), 2126–2130 (2011).
    [Crossref]
  16. C. Martinez and P. Ferdinand, “Analysis of phase-shifted fiber Bragg gratings written with phase plates,” Appl. Opt. 38(15), 3223–3228 (1999).
    [Crossref] [PubMed]
  17. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [Crossref] [PubMed]
  18. T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  19. M. Suter and P. Dietiker, “Calculation of the finesse of an ideal Fabry-Perot resonator,” Appl. Opt. 53(30), 7004–7010 (2014).
    [Crossref] [PubMed]
  20. Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
    [Crossref] [PubMed]
  21. C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
    [Crossref] [PubMed]

2018 (2)

2017 (3)

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

2016 (1)

2014 (2)

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

M. Suter and P. Dietiker, “Calculation of the finesse of an ideal Fabry-Perot resonator,” Appl. Opt. 53(30), 7004–7010 (2014).
[Crossref] [PubMed]

2012 (1)

A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
[Crossref]

2011 (3)

2006 (2)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

Y. O. Barmenkov, D. Zalvidea, S. Torres-Peiró, J. L. Cruz, and M. V. Andrés, “Effective length of short Fabry-Perot cavity formed by uniform fiber Bragg gratings,” Opt. Express 14(14), 6394–6399 (2006).
[Crossref] [PubMed]

2005 (1)

1999 (2)

1997 (1)

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1987 (2)

Andrés, M. V.

Barmenkov, Y. O.

Barnes, M.

Bogue, R.

R. Bogue, “Fibre optic sensors: a review of today’s applications,” Sens. Rev. 31(4), 304–309 (2011).
[Crossref]

Caucheteur, C.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Chen, C.

Chen, Q.-D.

Coulas, D.

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

Cruz, J. L.

Dietiker, P.

Ding, H.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber Grating Spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Ferdinand, P.

Friebele, E. J.

Ghoshal, A.

A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
[Crossref]

Goossen, K. W.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Grobnic, D.

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask,” Opt. Express 26(18), 23550–23564 (2018).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Birefringent π-phase-shifted fiber Bragg gratings for sensing at 1000°C fabricated using an infrared femtosecond laser and a phase mask,” the J. Lightwave Technol. 36(23), 5697–5703 (2018).

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

D. Grobnic, S. J. Mihailov, and R. B. Walker, “Narrowband High Temperature Sensor Based on Type II laser Cavity Made with Ultrafast Radiation,” in Advanced Photonics Conference (Optical Society of America2015), paper BW2D.5.

Guo, J.-C.

Heider, D.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Hnatovsky, C.

Hutchings, D. C.

Kim, H. S.

A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
[Crossref]

Kinet, D.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Le, D.

A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
[Crossref]

LeBlanc, M.

Lu, P.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

Martinez, C.

Mégret, P.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Mihailov, S.

Mihailov, S. J.

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “High-temperature stable π-phase-shifted fiber Bragg gratings inscribed using infrared femtosecond pulses and a phase mask,” Opt. Express 26(18), 23550–23564 (2018).
[Crossref] [PubMed]

C. Hnatovsky, D. Grobnic, and S. J. Mihailov, “Birefringent π-phase-shifted fiber Bragg gratings for sensing at 1000°C fabricated using an infrared femtosecond laser and a phase mask,” the J. Lightwave Technol. 36(23), 5697–5703 (2018).

C. Hnatovsky, D. Grobnic, D. Coulas, M. Barnes, and S. J. Mihailov, “Self-organized nanostructure formation during femtosecond-laser inscription of fiber Bragg gratings,” Opt. Lett. 42(3), 399–402 (2017).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Low loss Type II regenerative Bragg gratings made with ultrafast radiation,” Opt. Express 24(25), 28704–28712 (2016).
[Crossref] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, and R. B. Walker, “Narrowband High Temperature Sensor Based on Type II laser Cavity Made with Ultrafast Radiation,” in Advanced Photonics Conference (Optical Society of America2015), paper BW2D.5.

Ntziachristos, V.

Qiu, L.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Razansky, D.

Rosenthal, A.

Russell, D. A.

Sakuda, K.

Smelser, C.

Smelser, C. W.

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

Sun, H.-B.

Suter, M.

Tooley, F. A. P.

Torres-Peiró, S.

Tsai, T. E.

Vohra, S. T.

Walker, R. B.

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

D. Grobnic, S. J. Mihailov, and R. B. Walker, “Narrowband High Temperature Sensor Based on Type II laser Cavity Made with Ultrafast Radiation,” in Advanced Photonics Conference (Optical Society of America2015), paper BW2D.5.

Wang, L.

Yamada, M.

Yang, R.

Yu, Y.-S.

Zalvidea, D.

Appl. Opt. (3)

IEEE Photonics Technol. Lett. (1)

D. Grobnic, C. Hnatovsky, and S. J. Mihailov, “Thermally stable type II FBGs written through polyimide coatings of silica-based optical fiber,” IEEE Photonics Technol. Lett. 29(21), 1780–1783 (2017).
[Crossref]

J. Lightwave Technol. (3)

Meas. Sci. Technol. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–2013 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Sens. Rev. (2)

R. Bogue, “Fibre optic sensors: a review of today’s applications,” Sens. Rev. 31(4), 304–309 (2011).
[Crossref]

A. Ghoshal, D. Le, and H. S. Kim, “Technological assessment of high temperature sensing systems under extreme environment,” Sens. Rev. 32(1), 66–71 (2012).
[Crossref]

Sensors (Basel) (2)

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. Hnatovsky, R. B. Walker, P. Lu, D. Coulas, and H. Ding, “Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings,” Sensors (Basel) 17(12), 2909–2942 (2017).
[Crossref] [PubMed]

Other (1)

D. Grobnic, S. J. Mihailov, and R. B. Walker, “Narrowband High Temperature Sensor Based on Type II laser Cavity Made with Ultrafast Radiation,” in Advanced Photonics Conference (Optical Society of America2015), paper BW2D.5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the set-up for fs-laser exposure through a phase-shifted (PS) phase mask; (b) definitions of the spectral characteristics of a lossy π-PS-FBG.
Fig. 2
Fig. 2 Block diagram of the π-PS-FBG structure described in the text.
Fig. 3
Fig. 3 Measured spectrum of a π-PS-FBG (red) versus a spectrum of a π-PS-FBG simulated using Eq. (10) (blue).
Fig. 4
Fig. 4 Bandwidth calculated using the FBG simulator OPTIWAVE (black bullets) versus the high reflectivity approximation (red squares) using Eq. (15).
Fig. 5
Fig. 5 (Successive transmission spectra recorded after each irradiation pulse starting from N = 5 and ending with N = 9; Inset: Evolution of the broadband loss (black bullets), passband loss (green bullets) and grating strength (orange bullets) with the number of pulses N.
Fig. 6
Fig. 6 (a) Broadband loss (black bullets) and passband loss (red bullets) as a function of grating strength; (b) Passband loss as a function of broadband loss for the data presented in Fig. 6(a).
Fig. 7
Fig. 7 (a) Comparison of CME-TM and F-P simulations of passband loss (blue triangles and red squares, respectively) with measured values (black bullets) as a function of grating strength; (b) comparison of CME-TM simulations of passband bandwidth with and without loss (blue triangles and red squares, respectively) and the experimental data (black bullets) as a function of grating strength.
Fig. 8
Fig. 8 Histogram of 35 Type II π-PS-FBG passband bandwidth measurements having grating strength in the range of 14 to 16 dB in transmission.
Fig. 9
Fig. 9 Passband bandwidth for 40% (red), 60% (black), 80% (orange) and 98% (blue) reflectivity of the constituent gratings vs the π-PS-FBG’s length.

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

T φ 11 =exp(+ij) and T φ 22 =exp(ij)
Wavelength detuning: d= 2p n eff ( 1/l1/ l B )
DC selfcoupling coefficient: s=d+i a loss
AC coupling coefficientk: k =phDn/ l B
[ R (0) S (0) ]=T[ R(L) S(L) ]
A=cosh(gL),B=sinh(gL),g= ( k 2 s 2 ) 1/2 ,a=s/g,b=k/gi
T 11 =A+iaB, T 12 = ibB, T 21 = ibB, T 22 = A iaB
R( 0 ) = 1,S( 2L ) = 0
[ R (0) S (0) ]= T PS [ R(2L) S(2L) ]
1/τ= T 11 2 T 12 T 21 =12 α 2 B 2 +2iαAB
α= i α loss γ =i α 0
T max = | τ | 2 =1/ (1+2 α 0 2 B 2 2 α 0 AB) 2
T PB (δ,0,k)= | τ | 2 =1/(1+4 α 2 (1+ α 2 ) B 4 ),
2 ε 0 =(1r)/r
Δδ(0,k)=2 δ 0 = 1 L tan h 1 ( ρ ) 1ρ ρ
α= α 1 +i α 0 with α 1 =δ/γδ/k and α 0 = α loss /γ α loss /k
T PB 1 = T max 1 +4 α 1 2 B 4 (12 α 0 A/B),
2 ε 1/2 =[ (1ρ)/ρ ]/( T max 12 α 0 / ρ ),
Δδ( α loss ,k) T max =Δδ(0,k)
T(l,R,V) = ( 1R ) 2 V· { ( 1RV ) 2 ·[ 1+F sin 2 ( Kl ) ] } 1 ,
L eff =L R /(2tan h 1 ( R )
T max = (1R) 2 V/ (1RV) 2
Δλ=( λ 2 /π n eff L eff )arcsin(1/ 2+F ),
Δδ( α loss ,k)/Δδ(0,k)=1+2| α 0 |AB=1+ 2| α loss |L kL ρ 1ρ ,
Δδ( α loss ,k)=Δδ(0,k)+ 2| α loss | ρ
Δλ( α loss ,k)=Δλ(0,k)+const ln(kL/ k 0 L) ρ

Metrics