Abstract

Molecular vibration–plasmon couplings in a hybrid structure, which are composed of a silver grating filled with polymethyl methacrylate (PMMA) molecules (SG–PMMA), have been investigated theoretically. It is found that the interaction between the vibrational transitions and plasmons can transform from weak coupling into strong coupling by reducing the distance between the elements. When the space between grating elements is large, the localized surface plasmon resonance (LSP) of the silver elements greatly enhances the absorption of the PMMA molecules. As the gap between elements becomes small, the plasmonic nanocavity (NC) mode emerges and couples strongly with the molecular vibrational mode of PMMA. The strong coupling results in two new hybridized modes and the Rabi splitting energy is about 15 meV. Our work provides an effective way to alter the coupling strength of the molecular vibration-plasmon hybrid system and may be beneficial to the further biochemical and biophysical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanostructures for surface plasmons

Junxi Zhang and Lide Zhang
Adv. Opt. Photon. 4(2) 157-321 (2012)

Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle

Yong He, Cheng Jiang, Bin Chen, Jin-Jin Li, and Ka-Di Zhu
Opt. Lett. 37(14) 2943-2945 (2012)

Strong coupling of surface plasmon polaritons and ensembles of dye molecules

T. U. Tumkur, G. Zhu, and M. A. Noginov
Opt. Express 24(4) 3921-3928 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  2. A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
    [Crossref] [PubMed]
  3. S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
    [Crossref] [PubMed]
  4. J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, and F. Díaz, “Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass,” Opt. Lett. 41(11), 2493–2496 (2016).
    [Crossref] [PubMed]
  5. G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
    [Crossref]
  6. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
    [Crossref] [PubMed]
  7. N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
    [Crossref] [PubMed]
  8. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
    [Crossref]
  9. A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
    [Crossref] [PubMed]
  10. C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
    [Crossref] [PubMed]
  11. A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
    [Crossref] [PubMed]
  12. P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
    [Crossref] [PubMed]
  13. J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
    [Crossref] [PubMed]
  14. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [Crossref] [PubMed]
  15. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
    [Crossref] [PubMed]
  16. E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
    [Crossref]
  17. B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
    [Crossref]
  18. S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Absorption enhancement of molecules in the weak plasmon-exciton coupling regime,” Opt. Lett. 39(17), 4994–4997 (2014).
    [Crossref] [PubMed]
  19. J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
    [Crossref]
  20. X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
    [Crossref]
  21. A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
    [Crossref]
  22. A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
    [Crossref]
  23. W. Wan, X. Yang, and J. Gao, “Strong coupling between mid-infrared localized plasmons and phonons,” Opt. Express 24(11), 12367–12374 (2016).
    [Crossref] [PubMed]
  24. H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
    [Crossref] [PubMed]
  25. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref] [PubMed]
  26. S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
    [Crossref] [PubMed]
  27. Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
    [Crossref] [PubMed]
  28. H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
    [Crossref] [PubMed]
  29. S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
    [Crossref]
  30. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
    [Crossref]
  31. F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
    [Crossref] [PubMed]
  32. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [Crossref] [PubMed]
  33. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [Crossref] [PubMed]
  34. X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
    [Crossref]
  35. E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
    [Crossref] [PubMed]
  36. A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
    [Crossref] [PubMed]
  37. H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
    [Crossref]
  38. F. B. Barho, F. Gonzalez-Posada, M. J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
    [Crossref] [PubMed]
  39. W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
    [Crossref]
  40. S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
    [Crossref]
  41. L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
    [Crossref] [PubMed]
  42. R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
    [Crossref] [PubMed]
  43. P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
    [Crossref]
  44. C. W. Cheng, M. N. Abbas, Z. C. Chang, M. H. Shih, C. M. Wang, M. C. Wu, and Y. C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO2/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
    [Crossref] [PubMed]
  45. F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
    [Crossref] [PubMed]
  46. M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
    [Crossref]
  47. N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
    [Crossref] [PubMed]
  48. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
    [Crossref] [PubMed]
  49. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]

2018 (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

2017 (4)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

2016 (10)

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

J. Martínez, A. Ródenas, M. Aguiló, T. Fernandez, J. Solis, and F. Díaz, “Mid-infrared surface plasmon polariton chemical sensing on fiber-coupled ITO coated glass,” Opt. Lett. 41(11), 2493–2496 (2016).
[Crossref] [PubMed]

W. Wan, X. Yang, and J. Gao, “Strong coupling between mid-infrared localized plasmons and phonons,” Opt. Express 24(11), 12367–12374 (2016).
[Crossref] [PubMed]

F. B. Barho, F. Gonzalez-Posada, M. J. Milla-Rodrigo, M. Bomers, L. Cerutti, and T. Taliercio, “All-semiconductor plasmonic gratings for biosensing applications in the mid-infrared spectral range,” Opt. Express 24(14), 16175–16190 (2016).
[Crossref] [PubMed]

2015 (3)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

2014 (8)

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
[Crossref]

R. Feng, W. Ding, L. Liu, L. Chen, J. Qiu, and G. Chen, “Dual-band infrared perfect absorber based on asymmetric T-shaped plasmonic array,” Opt. Express 22(S2), A335–A343 (2014).
[Crossref] [PubMed]

S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Absorption enhancement of molecules in the weak plasmon-exciton coupling regime,” Opt. Lett. 39(17), 4994–4997 (2014).
[Crossref] [PubMed]

2013 (2)

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21(7), 9005–9010 (2013).
[Crossref] [PubMed]

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

2012 (4)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

2011 (4)

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

C. W. Cheng, M. N. Abbas, Z. C. Chang, M. H. Shih, C. M. Wang, M. C. Wu, and Y. C. Chang, “Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO2/Ag T-shaped array,” Opt. Lett. 36(8), 1440–1442 (2011).
[Crossref] [PubMed]

2010 (3)

L. Du, X. Zhang, T. Mei, and X. Yuan, “Localized surface plasmons, surface plasmon polaritons, and their coupling in 2D metallic array for SERS,” Opt. Express 18(3), 1959–1965 (2010).
[Crossref] [PubMed]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

2009 (2)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[Crossref] [PubMed]

2008 (1)

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

2007 (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2004 (4)

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

1999 (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[Crossref] [PubMed]

Abbas, M. N.

Agrawal, A. K.

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

Aguiló, M.

Akimov, A. V.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Amo, A.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Andersen, M. L.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

Antosiewicz, T. J.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Argyropoulos, C.

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Aslan, E.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Astilean, S.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
[Crossref]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Aydinli, A.

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Baillargeat, D.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Balci, O.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

Balci, S.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Absorption enhancement of molecules in the weak plasmon-exciton coupling regime,” Opt. Lett. 39(17), 4994–4997 (2014).
[Crossref] [PubMed]

Ballarini, D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Bardou, N.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Barho, F. B.

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Baten, M. Z.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Benson, O.

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Bhardwaj, R.

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

Bharti, A.

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

Bhattacharya, P.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Bloch, J.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Bomers, M.

Borghese, F.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Bouchon, P.

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Boulais, É.

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

Bravo-Abad, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Buchenauer, A.

Cabrini, S.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Cao, E.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Cerutti, L.

Cetin, A. E.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Chang, Y. C.

Chang, Z. C.

Chau, H. F.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[Crossref] [PubMed]

Chen, G.

Chen, L.

Chen, M.

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Cheng, C. W.

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Chin, X. Y.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Cuscuná, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

D’Agostino, S.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Dagher, G.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Das, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Dayal, G.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

De Giorgi, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

de Leon, N. P.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Delga, A.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Della Sala, F.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Denti, P.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Deshpande, S.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Dhuey, S. D.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Di Stefano, O.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Díaz, F.

Ding, Q.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Ding, W.

Dominici, L.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Du, L.

Dulka, J.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

Dupuis, C.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Durmaz, H.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Englund, D. E.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Esposito, M.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Feist, J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Feng, R.

Ferlazzo, L.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Fernandez, T.

Fernández-Domínguez, A. I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Fofang, N. T.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Frost, T.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Galfsky, T.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Galopin, E.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Gao, J.

Garcia-Vidal, F. J.

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

Gautam, S.

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Ghenuche, P.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Gigli, G.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Gonzalez-Posada, F.

Govorov, A. O.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

Goyal, N.

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Guo, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Hägglund, C.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Haïdar, R.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

Halas, N. J.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Hatef, A.

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

Hazari, A.

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Henneberger, F.

S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
[Crossref]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Henry, A. I.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Ho, H. P.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Högele, A.

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Huber, R.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Hupp, J. T.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[Crossref] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Kalusniak, S.

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
[Crossref]

Kamalasanan, M. N.

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Karademir, E.

Karatay, A.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

Kasemo, B.

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

Kaya, S.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kéna-Cohen, S.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Kocabas, C.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

S. Balci, E. Karademir, C. Kocabas, and A. Aydinli, “Absorption enhancement of molecules in the weak plasmon-exciton coupling regime,” Opt. Lett. 39(17), 4994–4997 (2014).
[Crossref] [PubMed]

Korkmaz, S.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Kotov, N. A.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

Kucukoz, B.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Kumar, A.

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Lee, J.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

Lee, Y.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Leierseder, U.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Lemaître, A.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Li, H.

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Liang, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Liedl, T.

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Lin, E.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Lin, W.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Liu, L.

Liu, X.

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Lo, H. K.

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[Crossref] [PubMed]

Lodahl, P.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Lukin, M. D.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Martínez, J.

Mehta, D. S.

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Mei, T.

Memmi, H.

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

Ménard, J. M.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Menon, V. M.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Meunier, M.

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

Milla-Rodrigo, M. J.

Mirin, N. A.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Muallem, M.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

Murray, W. A.

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nessim, G. D.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

Neumann, O.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nguyen, V. H.

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Nordlander, P.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Olynick, D. L.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Padmore, H. A.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Paiella, R.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Palatnik, A.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

Pardo, F.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

Park, H.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Park, T. H.

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Pelouard, J. L.

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Pilo-Pais, M.

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Poellmann, C.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Polyakov, A.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Porer, M.

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Portier, B.

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Pullerits, T.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Qiu, J.

Qu, Y.

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Ridolfo, A.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Ródenas, A.

Roller, E. M.

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Sadeghi, S. M.

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

Sadofev, S.

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
[Crossref]

Saija, R.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Sanvitto, D.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Savasta, S.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

Schatz, G. C.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[Crossref] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

Schnakenberg, U.

Schuck, P. J.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Shegai, T.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

Shi, Y.

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Shields, B. J.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Shih, M. H.

Singh, R.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Soci, C.

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Solis, J.

Song, Y. Z.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Sørensen, A. S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

Srivastava, R.

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Standridge, S. D.

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[Crossref] [PubMed]

Stobbe, S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Sun, M.

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Sun, Z.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Taliercio, T.

Tarantini, I.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Taubner, T.

Thompson, K. F.

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Tischler, Y. R.

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

Todisco, F.

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Turkmen, M.

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

Tyagi, P.

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wan, W.

Wang, C. M.

Wang, R.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Wang, T.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

Wu, D.

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Wu, M. C.

Wu, X.

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Xia, F.

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Yaglioglu, G.

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

Yang, H.

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Yang, X.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

W. Wan, X. Yang, and J. Gao, “Strong coupling between mid-infrared localized plasmons and phonons,” Opt. Express 24(11), 12367–12374 (2016).
[Crossref] [PubMed]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Yao, J.

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Yong, K. T.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

Yu, C. L.

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Yu, H.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Yuan, X.

Zeng, S.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Zhang, G.

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Zhang, X.

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

ACS Nano (2)

F. Todisco, S. D’Agostino, M. Esposito, A. I. Fernández-Domínguez, M. De Giorgi, D. Ballarini, L. Dominici, I. Tarantini, M. Cuscuná, F. Della Sala, G. Gigli, and D. Sanvitto, “Exciton−plasmon coupling enhancement via metal oxidation,” ACS Nano 9(10), 9691–9699 (2015).
[Crossref] [PubMed]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4(11), 6369–6376 (2010).
[Crossref] [PubMed]

ACS Photonics (2)

S. Balci, B. Kucukoz, O. Balci, A. Karatay, C. Kocabas, and G. Yaglioglu, “Tunable plexcitonic nanoparticles: a model system for studying plasmon−exciton interaction from the weak to the ultrastrong coupling regime,” ACS Photonics 3(11), 2010–2016 (2016).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon−exciton interactions in a core−shell geometry: from enhanced absorption to strong coupling,” ACS Photonics 1(5), 454–463 (2014).
[Crossref]

Adv. Opt. Mater. (2)

A. E. Cetin, S. Korkmaz, H. Durmaz, E. Aslan, S. Kaya, R. Paiella, and M. Turkmen, “Quantification of multiple molecular fingerprints by dual-resonant perfect absorber,” Adv. Opt. Mater. 4(8), 1274–1280 (2016).
[Crossref]

G. Dayal, X. Y. Chin, C. Soci, and R. Singh, “High-Q plasmonic Fano resonance for multiband surface-enhanced infrared absorption of molecular vibrational sensing,” Adv. Opt. Mater. 5(2), 1600559 (2017).
[Crossref]

Ann. Phys. (1)

M. Muallem, A. Palatnik, G. D. Nessim, and Y. R. Tischler, “Strong light-matter coupling between a molecular vibrational mode in a PMMA film and a low-loss mid-IR microcavity,” Ann. Phys. 528(3–4), 313–320 (2016).
[Crossref]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. Bouchon, F. Pardo, B. Portier, L. Ferlazzo, P. Ghenuche, G. Dagher, C. Dupuis, N. Bardou, R. Haïdar, and J. L. Pelouard, “Total funneling of light in high aspect ratio plasmonic nanoresonators,” Appl. Phys. Lett. 98(19), 191109 (2011).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

S. D. Standridge, G. C. Schatz, and J. T. Hupp, “Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells,” J. Am. Chem. Soc. 131(24), 8407–8409 (2009).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Yang, J. Yao, X. Wu, D. Wu, and X. Liu, “Strong plasmon−exciton−plasmon multimode couplings in three-layered Ag−J-Aggregates−Ag nanostructures,” J. Phys. Chem. C 121(45), 25455–25462 (2017).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: Materials, applications, and the future,” Mater. Today 15(1–2), 16–25 (2012).
[Crossref]

Mater. Today Energy (1)

X. Yang, H. Yu, X. Guo, Q. Ding, T. Pullerits, R. Wang, G. Zhang, W. Liang, and M. Sun, “Plasmon-exciton coupling of monolayer MoS2-Ag nanoparticles hybrids for surface catalytic reaction,” Mater. Today Energy 5, 72–78 (2017).
[Crossref]

Nano Lett. (4)

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: plasmon−exciton interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[Crossref]

E. M. Roller, C. Argyropoulos, A. Högele, T. Liedl, and M. Pilo-Pais, “Plasmon−exciton coupling using DNA templates,” Nano Lett. 16(9), 5962–5966 (2016).
[Crossref] [PubMed]

C. Hägglund, S. P. Apell, and B. Kasemo, “Maximized optical absorption in ultrathin films and its application to plasmon-based two-dimensional photovoltaics,” Nano Lett. 10(8), 3135–3141 (2010).
[Crossref] [PubMed]

N. T. Fofang, T. H. Park, O. Neumann, N. A. Mirin, P. Nordlander, and N. J. Halas, “Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-Aggregate complexes,” Nano Lett. 8(10), 3481–3487 (2008).
[Crossref] [PubMed]

Nanophotonics (1)

E. Cao, W. Lin, M. Sun, W. Liang, and Y. Z. Song, “Exciton-plasmon coupling interactions: from principle to applications,” Nanophotonics 7(1), 145–167 (2018).
[Crossref]

Nanotechnology (1)

A. Hatef, S. M. Sadeghi, É. Boulais, and M. Meunier, “Quantum dot-metallic nanorod sensors via exciton-plasmon interaction,” Nanotechnology 24(1), 015502 (2013).
[Crossref] [PubMed]

Nat. Commun. (1)

J. M. Ménard, C. Poellmann, M. Porer, U. Leierseder, E. Galopin, A. Lemaître, A. Amo, J. Bloch, and R. Huber, “Revealing the dark side of a bright exciton-polariton condensate,” Nat. Commun. 5(1), 4648 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Liu, T. Galfsky, Z. Sun, F. Xia, E. Lin, Y. Lee, S. Kéna-Cohen, and V. M. Menon, “Strong light–matter coupling in two-dimensional atomic crystals,” Nat. Photonics 9(1), 30–34 (2015).
[Crossref]

Nat. Phys. (1)

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon–matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7(3), 215–218 (2011).
[Crossref]

Nature (5)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[Crossref] [PubMed]

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature 535(7610), 127–130 (2016).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[Crossref] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[Crossref] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

Org. Electron. (1)

A. Kumar, R. Srivastava, P. Tyagi, D. S. Mehta, and M. N. Kamalasanan, “Efficiency enhancement of organic light emitting diode via surface energy transfer between exciton and surface plasmon,” Org. Electron. 13(1), 159–165 (2012).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

W. A. Murray, S. Astilean, and W. L. Barnes, “Transition from localized surface plasmon resonance to extended surface plasmon-polariton as metallic nanoparticles merge to form a periodic hole array,” Phys. Rev. B Condens. Matter Mater. Phys. 69(16), 165407 (2004).
[Crossref]

S. Kalusniak, S. Sadofev, and F. Henneberger, “Resonant interaction of molecular vibrations and surface plasmon polaritons: the weak coupling regime,” Phys. Rev. B Condens. Matter Mater. Phys. 90(12), 125423 (2014).
[Crossref]

Phys. Rev. Lett. (5)

F. Pardo, P. Bouchon, R. Haïdar, and J. L. Pelouard, “Light funneling mechanism explained by magnetoelectric interference,” Phys. Rev. Lett. 107(9), 093902 (2011).
[Crossref] [PubMed]

H. Memmi, O. Benson, S. Sadofev, and S. Kalusniak, “Strong coupling between surface plasmon polaritons and molecular vibrations,” Phys. Rev. Lett. 118(12), 126802 (2017).
[Crossref] [PubMed]

A. Delga, J. Feist, J. Bravo-Abad, and F. J. Garcia-Vidal, “Quantum emitters near a metal nanoparticle: strong coupling and quenching,” Phys. Rev. Lett. 112(25), 253601 (2014).
[Crossref] [PubMed]

P. Bhattacharya, T. Frost, S. Deshpande, M. Z. Baten, A. Hazari, and A. Das, “Room temperature electrically injected polariton laser,” Phys. Rev. Lett. 112(23), 236802 (2014).
[Crossref] [PubMed]

N. P. de Leon, B. J. Shields, C. L. Yu, D. E. Englund, A. V. Akimov, M. D. Lukin, and H. Park, “Tailoring light-matter interaction with a nanoscale plasmon resonator,” Phys. Rev. Lett. 108(22), 226803 (2012).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Sci. Rep. (3)

A. Bharti, R. Bhardwaj, A. K. Agrawal, N. Goyal, and S. Gautam, “Monochromatic X-ray induced novel synthesis of plasmonic nanostructure for photovoltaic application,” Sci. Rep. 6(1), 22394 (2016).
[Crossref] [PubMed]

A. Polyakov, K. F. Thompson, S. D. Dhuey, D. L. Olynick, S. Cabrini, P. J. Schuck, and H. A. Padmore, “Plasmon resonance tuning in metallic nanocavities,” Sci. Rep. 2(1), 933 (2012).
[Crossref] [PubMed]

Q. Ding, Y. Shi, M. Chen, H. Li, X. Yang, Y. Qu, W. Liang, and M. Sun, “Ultrafast dynamics of plasmon−exciton interaction of Ag nanowire−graphene hybrids for surface catalytic reactions,” Sci. Rep. 6(1), 32724 (2016).
[Crossref] [PubMed]

Science (1)

H. K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283(5410), 2050–2056 (1999).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the cross section of SG-PMMA hybrid structure. (b) Absorption spectra of the SG–PMMA, the silver grating, and the PMMA molecules in the grooves, respectively. Here, the period P = 3000 nm, the element width w = 2000 nm, and the height of the elements h = 775 nm.
Fig. 2
Fig. 2 (a) Contour plot of the absorption spectra of the silver grating as a function of element height h. (b) Contour plot of the absorption spectra of the SG–PMMA as a function of h. The dashed and dotted lines represent variations of the LSP mode and molecular vibrational mode, respectively. (c) Maximal absorption of the SG–PMMA at 5.77 μm as a function of h. Here, the period P and width w are fixed at 3000 nm and 2000 nm, respectively.
Fig. 3
Fig. 3 (a) Absorption spectra of the silver gratings with grating period P of 3000 nm (solid line), 2700 nm (short dashed line), 2400 nm (short dotted line). (b) Electric field distribution in the silver gratings with P = 3000 nm at resonance wavelength of 5.30 μm. (c) Absorption spectra of the silver gratings with grating period P of 2100 nm (solid line), 2090 nm (short dashed line), 2080 nm (short dotted line). (d) Electric field distribution in the silver grating with P = 2100 nm at resonance wavelength of 5.73 μm. Here, the element width w and element height h are fixed at 2000 nm and 700 nm, respectively.
Fig. 4
Fig. 4 (a) Contour plot of the absorption spectra of the silver grating as a function of h. (b) Contour plot of the absorption spectra of the SG–PMMA hybrid structure as a function of h. Here, the period P and width w are fixed at 2100 nm and 2000 nm, respectively. The solid and dash-dot lines show the hybridized HM and LM, respectively. The dashed and dotted lines represent the uncoupled nanocavity mode (NC) of the silver grating and molecular vibrational mode of PMMA, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( E 1 +i Γ plasmon /2 g g E 2 +i Γ PMMA /2 )( α β )=E( α β ),

Metrics