Abstract

We report the study and demonstration of a new laser pulse shaping system capable of generating linearly polarized picosecond laser pulses with variable temporal profiles including symmetric intensity distributions, as well as non-symmetric distributions, which are highly desired by various applications. It is found that both high transmittance and high stability of the shaped pulse can be achieved simultaneously when crystals are set at a specific phase delay through fine control of the crystal temperature. Although multi-crystal pulse stacking with different configurations was reported before particularly for flattop pulse generation, this new configuration leads to new opportunities for many potential applications over a wide range of laser wavelengths, pulse repetition rate, time structures and power levels. A practical double-pass temporal shaping configuration that significantly reduces the number of crystals is also proposed in this paper as a result of present study.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of flattop pump pulses for OPCPA by coherent pulse stacking with fiber Bragg gratings

J. Rothhardt, S. Hädrich, T. Gottschall, J. Limpert, A. Tünnermann, M. Rothhardt, M. Becker, S. Brückner, and H. Bartelt
Opt. Express 17(18) 16332-16341 (2009)

Phase-only synthesis of ultrafast stretched square pulses

Vadim V. Lozovoy, Gennady Rasskazov, Anton Ryabtsev, and Marcos Dantus
Opt. Express 23(21) 27105-27112 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Boscolo and C. Finot, “Nonlinear pulse shaping in fibres for pulse generation and optical processing,” Int. J. Opt. 2012, 159057 (2012).
    [Crossref]
  2. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
    [Crossref] [PubMed]
  3. D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
    [Crossref] [PubMed]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
    [Crossref] [PubMed]
  5. C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
    [Crossref] [PubMed]
  6. F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
    [Crossref]
  7. E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
    [Crossref] [PubMed]
  8. T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
    [Crossref]
  9. F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
    [Crossref] [PubMed]
  10. F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
    [Crossref]
  11. A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26(8), 1492–1496 (2009).
    [Crossref]
  12. R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” (2008 34th European Conference on Optical Communication, 2008), pp. 1–2.
    [Crossref]
  13. A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
    [Crossref]
  14. O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
    [Crossref] [PubMed]
  15. R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
    [Crossref]
  16. B. M. Zhang, Y. Feng, D. Lin, J. H. V. Price, J. Nilsson, S. Alam, P. P. Shum, D. N. Payne, and D. J. Richardson, “Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power,” Opt. Express 25(13), 15402–15413 (2017).
    [Crossref] [PubMed]
  17. P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
    [Crossref]
  18. H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
    [Crossref]
  19. I. Will and G. Klemz, “Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter,” Opt. Express 16(19), 14922–14937 (2008).
    [Crossref] [PubMed]
  20. Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
    [Crossref] [PubMed]
  21. J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
    [Crossref]
  22. R. A. Meijer, A. S. Stodolna, K. S. E. Eikema, and S. Witte, “High-energy Nd:YAG laser system with arbitrary sub-nanosecond pulse shaping capability,” Opt. Lett. 42(14), 2758–2761 (2017).
    [Crossref] [PubMed]
  23. I. Šolc, “Birefringent Chain Filters,” J. Opt. Soc. Am. 55(6), 621–625 (1965).
    [Crossref]
  24. S. E. Harris, E. O. Ammann, and I. C. Chang, “Optical network synthesis using birefringent crystals.* I. Synthesis of lossless networks of equal-length crystals,” J. Opt. Soc. Am. 54(10), 1267–1279 (1964).
    [Crossref]
  25. A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
    [Crossref]
  26. S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

2017 (2)

2012 (1)

S. Boscolo and C. Finot, “Nonlinear pulse shaping in fibres for pulse generation and optical processing,” Int. J. Opt. 2012, 159057 (2012).
[Crossref]

2011 (1)

2009 (4)

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26(8), 1492–1496 (2009).
[Crossref]

A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
[Crossref]

2008 (2)

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

I. Will and G. Klemz, “Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter,” Opt. Express 16(19), 14922–14937 (2008).
[Crossref] [PubMed]

2007 (4)

Y. Park, M. H. Asghari, T.-J. Ahn, and J. Azaña, “Transform-limited picosecond pulse shaping based on temporal coherence synthesization,” Opt. Express 15(15), 9584–9599 (2007).
[Crossref] [PubMed]

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

D. N. Papadopoulos, Y. Zaouter, M. Hanna, F. Druon, E. Mottay, E. Cormier, and P. Georges, “Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit,” Opt. Lett. 32(17), 2520–2522 (2007).
[Crossref] [PubMed]

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

2006 (2)

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

2005 (2)

C. Finot, S. Pitois, and G. Millot, “Regenerative 40 Gbit/s wavelength converter based on similariton generation,” Opt. Lett. 30(14), 1776–1778 (2005).
[Crossref] [PubMed]

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

2004 (1)

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

2001 (1)

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

1984 (1)

A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
[Crossref]

1965 (1)

1964 (1)

Ahn, T.-J.

Alam, S.

Almeida, P. J.

Ammann, E. O.

Andresen, E. R.

Asghari, M. H.

Audouard, E.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Azaña, J.

Baltuška, A.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Benson, S.

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Bhamber, R. S.

Boscolo, S.

S. Boscolo and C. Finot, “Nonlinear pulse shaping in fibres for pulse generation and optical processing,” Int. J. Opt. 2012, 159057 (2012).
[Crossref]

A. I. Latkin, S. Boscolo, R. S. Bhamber, and S. K. Turitsyn, “Doubling of optical signals using triangular pulses,” J. Opt. Soc. Am. B 26(8), 1492–1496 (2009).
[Crossref]

Breitling, D.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Chang, I. C.

Cormier, E.

Dausinger, F.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

de Loos, M. J.

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

Dewa, H.

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

Druon, F.

Dudley, J. M.

E. R. Andresen, J. M. Dudley, D. Oron, C. Finot, and H. Rigneault, “Transform-limited spectral compression by self-phase modulation of amplitude-shaped pulses with negative chirp,” Opt. Lett. 36(5), 707–709 (2011).
[Crossref] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

Eikema, K. S. E.

Ellis, A. D.

Feng, Y.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

Finot, C.

Föhl, C.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Fülöp, J. A.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Georges, P.

Gubeli, J.

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Hanaki, H.

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

Hanna, M.

Harris, S. E.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

Horváth, B.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Ibsen, M.

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[Crossref]

Johnson, A. M.

A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
[Crossref]

Kiewiet, F. B.

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

Klemz, G.

König, K.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Krausz, F.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

Latkin, A. I.

Le Harzic, R.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Lin, D.

Luiten, O. J.

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

Major, Z.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Matsui, F.

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

Meijer, R. A.

Millot, G.

Mottay, E.

Mukasa, K.

Neil, G.

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Ng, T. T.

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

Nilsson, J.

Oron, D.

Papadopoulos, D. N.

Park, Y.

Parmigiani, F.

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

Payne, D. N.

Petropoulos, P.

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[Crossref]

Pitois, S.

Price, J. H. V.

Rao, T.

A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
[Crossref]

Richardson, D. J.

B. M. Zhang, Y. Feng, D. Lin, J. H. V. Price, J. Nilsson, S. Alam, P. P. Shum, D. N. Payne, and D. J. Richardson, “Demonstration of arbitrary temporal shaping of picosecond pulses in a radially polarized Yb-fiber MOPA with > 10 W average power,” Opt. Express 25(13), 15402–15413 (2017).
[Crossref] [PubMed]

F. Parmigiani, P. Petropoulos, M. Ibsen, P. J. Almeida, T. T. Ng, and D. J. Richardson, “Time domain add-drop multiplexing scheme enhanced using a saw-tooth pulse shaper,” Opt. Express 17(10), 8362–8369 (2009).
[Crossref] [PubMed]

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. F. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006).
[Crossref] [PubMed]

P. Petropoulos, M. Ibsen, A. D. Ellis, and D. J. Richardson, “Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating,” J. Lightwave Technol. 19(5), 746–752 (2001).
[Crossref]

Rigneault, H.

Roelens, M. A. F.

Sharma, A. K.

A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
[Crossref]

Shum, P. P.

Simpson, W. M.

A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
[Crossref]

Šolc, I.

Sommer, S.

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

Stodolna, A. S.

Stolen, R. H.

A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
[Crossref]

Tavella, F.

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

Tomizawa, H.

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

Tsang, T.

A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
[Crossref]

Turitsyn, S. K.

van der Geer, S. B.

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

van der Wiel, M. J.

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

Will, I.

Wilson, G.

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Witte, S.

Zaouter, Y.

Zhang, B. M.

Zhang, S.

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Zhaowei, Z.

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

Appl. Phys. B (1)

J. A. Fülöp, Z. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, “Shaping of picosecond pulses for pumping optical parametric amplification,” Appl. Phys. B 87(1), 79–84 (2007).
[Crossref]

Appl. Phys. Lett. (1)

A. M. Johnson, R. H. Stolen, and W. M. Simpson, “80× single-stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses,” Appl. Phys. Lett. 44(8), 729–731 (1984).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Le Harzic, D. Breitling, S. Sommer, C. Föhl, K. König, F. Dausinger, and E. Audouard, “Processing of metals by double pulses with short laser pulses,” Appl. Phys., A Mater. Sci. Process. 81(6), 1121–1125 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (3)

F. Parmigiani, M. Ibsen, P. Petropoulos, and D. J. Richardson, “Efficient all-optical wavelength-conversion scheme based on a saw-tooth pulse shaper,” IEEE Photonics Technol. Lett. 21(24), 1837–1839 (2009).
[Crossref]

F. Parmigiani, P. Petropoulos, M. Ibsen, and D. J. Richardson, “Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating,” IEEE Photonics Technol. Lett. 18(7), 829–831 (2006).
[Crossref]

T. T. Ng, F. Parmigiani, M. Ibsen, Z. Zhaowei, P. Petropoulos, and D. J. Richardson, “Compensation of linear distortions by using XPM with parabolic pulses as a time lens,” IEEE Photonics Technol. Lett. 20(13), 1097–1099 (2008).
[Crossref]

Int. J. Opt. (1)

S. Boscolo and C. Finot, “Nonlinear pulse shaping in fibres for pulse generation and optical processing,” Int. J. Opt. 2012, 159057 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84(26 Pt 1), 6010–6013 (2000).
[Crossref] [PubMed]

O. J. Luiten, S. B. van der Geer, M. J. de Loos, F. B. Kiewiet, and M. J. van der Wiel, “How to realize uniform three-dimensional ellipsoidal electron bunches,” Phys. Rev. Lett. 93(9), 094802 (2004).
[Crossref] [PubMed]

Phys. Rev. Spec. Top. Accel. Beams (1)

A. K. Sharma, T. Tsang, and T. Rao, “Theoretical and experimental study of passive spatiotemporal shaping of picosecond laser pulses,” Phys. Rev. Spec. Top. Accel. Beams 12(3), 033501 (2009).
[Crossref]

Quantum Electron. (1)

H. Tomizawa, H. Dewa, H. Hanaki, and F. Matsui, “Development of a yearlong maintenance-free terawatt Ti: Sapphire laser system with a 3D UV-pulse shaping system for THG,” Quantum Electron. 37(8), 697–705 (2007).
[Crossref]

Other (2)

R. S. Bhamber, A. I. Latkin, S. Boscolo, and S. K. Turitsyn, “All-optical TDM to WDM signal conversion and partial regeneration using XPM with triangular pulses,” (2008 34th European Conference on Optical Communication, 2008), pp. 1–2.
[Crossref]

S. Zhang, S. Benson, J. Gubeli, G. Neil, and G. Wilson, “Investigation and evaluation on pulse stackers for temporal shaping of laser pulses,” 2010. in Proc. (32nd Int. Free Electron Linac Conf, 2010), pp. 394–397.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The optical layout of the multiple birefringent crystal shaper used for pulse shaping in this paper. Θ n is the angle between the optical axis of the n-th crystal and the polarization direction of the input polarizer #1. φ n is the crystal phase delay of the n-th crystal.
Fig. 2
Fig. 2 Optical layout of the experimental setup including a cross correlator for pulse temporal profile measurement. M1: dichroic mirror,M2~M7:high reflectors, W: half-wave plate, P: polarizer (a variable beam splitter is formed by the combination of W and P).
Fig. 3
Fig. 3 Results of both the measured (blue lines) and the calculated (red solid lines, corresponding crystal rotation angle corrections are listed in Table 1) pulse profiles after the shaper, (a) Parabolic, (b) Flattop, (c) Elliptical, (d) Triangular, (e) Sawtooth-I, (f) Sawtooth-II. Black dashed curves are theoretically calculated 8 + 1 replica pulses. Green dash-dotted lines are the ideal parabolic and elliptical shapes. Birefringent elements in the shaper are identical. See detailed description in the text.
Fig. 4
Fig. 4 (a) Recording of measured triangular pulse shapes at different times during 8-hour continuous operation when each crystal phase delay was set to π. (b) Calculated triangular pulse profiles with all the crystal phase delays set to π, 0.98π,0.96π,0.94π,0.92π, and 0.9π, respectively. The specific crystal rotation angle corrections for the calculated triangular pulse profiles are listed in Table 1. The crystals and the input pulse are the same as those in Table 1.
Fig. 5
Fig. 5 Calculated (red solid lines) sawtooth pulses of the shaper with crystal rotation angles set at ( a ):  Θ n ,( b ): Θ n 90 o , ( c ): Θ n ,and ( d ): Θ n + 90 o , respectively. The specific crystal rotation angle values for different sawtooth pulses in this figure are listed in Table 2. Black dashed curves are theoretically calculated 8 + 1 replica pulses. The crystals and the input pulse are the same as those in Table 1.
Fig. 6
Fig. 6 The optical layout of an efficient double pass birefringent crystal shaper. Θ n is the angle between the optical axis of the n-th crystal and the polarization direction of the input polarizer. φ n is the crystal phase delay of the n-th crystal. Θ q , representing the angle between the fast or slow axis of the QWR and the polarization direction of the input polarizer, is 0° for this double pass shaper.

Tables (2)

Tables Icon

Table 1 Calculated crystal rotation angle corrections Δ Θ n for different output pulse shapes, where Δ Θ n = Θ n,tuned [ (1) n 45 o N + 90 o ]. All the crystals in the shaper are a–cut YVO4 with identical thickness of 3.3mm and phase delay set to π rad. The input pulse profile is a Sech2 distribution, with 6.5ps FWHM pulse width and 532nm wavelength.

Tables Icon

Table 2 Calculated crystal rotation angles ( Θ n,tuned ) for sawtooth pulses of the shaper with crystal rotation angles set at   Θ n ,  Θ n 90 o ,  Θ n , and  Θ n + 90 o , respectively. The crystals and the input pulse are the same as those in Table 1.

Metrics