Abstract

We show that coherent interaction between two sets of multiple resonances leads to exotic resonant effects, such as Fano-type resonances, optical analogue of electro-magnetically induced transparency, and avoided crossing between modes, under different coupling regimes. We experimentally demonstrate such resonant effects in a photonic crystal nanofiber cavity using two sets of cavity modes with orthogonal polarizations. The interaction between the modes arises due to intra-cavity polarization mixing. The observed line shapes are reproduced using a multiple-mode interaction model. Such spectral characteristics may further enhance the capabilities of the nanofiber cavity as a fiber-in-line platform for nanophotonics and quantum photonics applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coupled-resonator-induced reflection in photonic-crystal waveguide structures

Sergei F. Mingaleev, Andrey E. Miroshnichenko, and Yuri S. Kivshar
Opt. Express 16(15) 11647-11659 (2008)

Analog electromagnetically induced transparency for circularly polarized wave using three-dimensional chiral metamaterials

Hai Lin, Dong Yang, Song Han, Yangjie Liu, and Helin Yang
Opt. Express 24(26) 30068-30078 (2016)

Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices

Zhanghua Han and Sergey I. Bozhevolnyi
Opt. Express 19(4) 3251-3257 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [Crossref]
  2. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
    [Crossref]
  3. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
    [Crossref]
  4. B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
    [Crossref]
  5. A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
    [Crossref]
  6. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
    [Crossref]
  7. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref] [PubMed]
  8. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref] [PubMed]
  9. S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
    [Crossref] [PubMed]
  10. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
    [Crossref]
  11. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  12. Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
    [Crossref]
  13. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
    [Crossref] [PubMed]
  14. Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
    [Crossref]
  15. Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
    [Crossref]
  16. L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
    [Crossref]
  17. C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
    [Crossref]
  18. J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010).
    [Crossref] [PubMed]
  19. G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. A 12, 043001 (2010).
    [Crossref]
  20. L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
    [Crossref]
  21. P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
    [Crossref]
  22. K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
    [Crossref]
  23. F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
    [Crossref]
  24. P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
    [Crossref] [PubMed]
  25. K. P. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” Opt. Express 21, 2480–2490 (2013).
    [Crossref] [PubMed]
  26. K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
    [Crossref] [PubMed]
  27. K. P. Nayak, J. Keloth, and K. Hakuta, “Fabrication of 1-D photonic crystal cavity on a nanofiber using femtosecond laser-induced ablation,” J. Vis. Exp. 120, e55136 (2017).
  28. J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
    [Crossref] [PubMed]
  29. H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984), Vol. 1.
  30. K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
    [Crossref]
  31. E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
    [Crossref]

2018 (2)

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
[Crossref]

2017 (6)

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

K. P. Nayak, J. Keloth, and K. Hakuta, “Fabrication of 1-D photonic crystal cavity on a nanofiber using femtosecond laser-induced ablation,” J. Vis. Exp. 120, e55136 (2017).

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
[Crossref] [PubMed]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

2016 (1)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

2014 (6)

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

2011 (1)

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

2010 (5)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010).
[Crossref] [PubMed]

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. A 12, 043001 (2010).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

2009 (1)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

2007 (1)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

2005 (2)

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

2003 (1)

C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Balykin, V. I.

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Brambilla, G.

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. A 12, 043001 (2010).
[Crossref]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Cao, J.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Chen, W.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Chen, Y

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Chen, Y.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Chiba, A.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

Cong, L.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Dawkins, S. T.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Dobrindt, J. M.

J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010).
[Crossref] [PubMed]

Dong, Z.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Fan, S.

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

Fatemi, F. K.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Fujiwara, H.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Gong, Q

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Grajower, M.

L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
[Crossref]

Grover, J. A.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Guo, X.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Gupta, S. D.

K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Hackenbroich, G.

C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
[Crossref]

Hakuta, K.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

K. P. Nayak, J. Keloth, and K. Hakuta, “Fabrication of 1-D photonic crystal cavity on a nanofiber using femtosecond laser-induced ablation,” J. Vis. Exp. 120, e55136 (2017).

J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
[Crossref] [PubMed]

K. P. Nayak, P. Zhang, and K. Hakuta, “Optical nanofiber-based photonic crystal cavity,” Opt. Lett. 39, 232–235 (2014).
[Crossref] [PubMed]

K. P. Nayak and K. Hakuta, “Photonic crystal formation on optical nanofibers using femtosecond laser ablation technique,” Opt. Express 21, 2480–2490 (2013).
[Crossref] [PubMed]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Han, S.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984), Vol. 1.

Heuck, M.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Hoffman, J. E.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Hotta, J.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

Hu, H.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Jiang, X.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Keloth, J.

J. Keloth, K. P. Nayak, and K. Hakuta, “Fabrication of a centimeter-long cavity on a nanofiber for cavity quantum electrodynamics,” Opt. Lett. 42, 1003–1006 (2017).
[Crossref] [PubMed]

K. P. Nayak, J. Keloth, and K. Hakuta, “Fabrication of 1-D photonic crystal cavity on a nanofiber using femtosecond laser-induced ablation,” J. Vis. Exp. 120, e55136 (2017).

Kien, F. L.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

Kippenberg, T. J.

J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010).
[Crossref] [PubMed]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Kolluru, K.

K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
[Crossref]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Levy, U.

L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
[Crossref]

Li, B.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Li, T.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Li, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Lin, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Liu, H.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Liu, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Lodahl, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Lou, J.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Mahmoodian, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Mitsch, R.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Mørk, J.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Nayak, K. P.

Nori, F.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Orozco, L. A.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Oxenløwe, L. K.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Peng, B.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Peucheret, C.

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Pichler, H.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

Rauschenbeutel, A.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Ravets, S.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Reitz, D.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Rolston, S. L.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Sadgrove, M.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

Saha, S.

K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
[Crossref]

Sasaki, K.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

Schneeweiss, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Semenova, E.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Singh, R.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Solano, P.

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Sonnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Stern, L.

L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
[Crossref]

Stobbe, S.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Takeuchi, S.

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Tong, L.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Vetsch, E.

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

Viviescas, C.

C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
[Crossref]

Volz, J.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Wang, S.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Xiao, B.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Xiao, Y.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Xue, W.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Yalla, R.

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

Yang, H.

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Yang, L.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Yu, Y.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Yvind, K.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Zhang, P.

Zhang, X.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Zhu, S.

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

Zi, F.

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Zoller, P.

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Zou, C.

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

Advances In Atomic, Molecular, and Optical Physics (1)

P. Solano, J. A. Grover, J. E. Hoffman, S. Ravets, F. K. Fatemi, L. A. Orozco, and S. L. Rolston, “Optical nanofibers: a new platform for quantum optics,” Advances In Atomic, Molecular, and Optical Physics 66, 439 (2017).
[Crossref]

Appl. Phys. Lett. (7)

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high- Q photonic crystal nanocavities,” Appl. Phys. Lett. 94, 071101 (2009).
[Crossref]

B. Li, Y. Xiao, C. Zou, Y. Liu, X. Jiang, Y Chen, Y. Li, and Q Gong, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98, 021116 (2011).
[Crossref]

A. Chiba, H. Fujiwara, J. Hotta, S. Takeuchi, and K. Sasaki, “Fano resonance in a multimode tapered fiber coupled with a microspherical cavity,” Appl. Phys. Lett. 86, 261106 (2005).
[Crossref]

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80, 908–910 (2002).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105, 161106 (2014).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Xue, C. Peucheret, Y. Chen, L. K. Oxenløwe, K. Yvind, and J. Mørk, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105, 061117 (2014).
[Crossref]

Z. Dong, H. Liu, J. Cao, T. Li, S. Wang, S. Zhu, and X. Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97, 114101 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

E. Vetsch, S. T. Dawkins, R. Mitsch, D. Reitz, P. Schneeweiss, and A. Rauschenbeutel, “Nanofiber-based optical trapping of cold neutral atoms,” IEEE J. Sel. Top. Quantum Electron. 18, 1763–1770 (2012).
[Crossref]

J. Opt. (1)

K. P. Nayak, M. Sadgrove, R. Yalla, F. L. Kien, and K. Hakuta, “Nanofiber quantum photonics,” J. Opt. 20, 073001 (2018).
[Crossref]

J. Opt. A (1)

G. Brambilla, “Optical fibre nanowires and microwires: a review,” J. Opt. A 12, 043001 (2010).
[Crossref]

J. Vis. Exp. (1)

K. P. Nayak, J. Keloth, and K. Hakuta, “Fabrication of 1-D photonic crystal cavity on a nanofiber using femtosecond laser-induced ablation,” J. Vis. Exp. 120, e55136 (2017).

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Nat. Commun. (3)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

L. Stern, M. Grajower, and U. Levy, “Fano resonances and all-optical switching in a resonantly coupled plasmonic atomic system,” Nat. Commun. 5, 4865 (2014).
[Crossref]

Nat. Photon. (1)

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mørk, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photon. 11, 81–85 (2017).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11, 543–554 (2017).
[Crossref]

Nature (1)

P. Lodahl, S. Mahmoodian, S. Stobbe, A. Rauschenbeutel, P. Schneeweiss, J. Volz, H. Pichler, and P. Zoller, “Chiral quantum optics,” Nature 541, 473–480 (2017).
[Crossref] [PubMed]

Opt. Comm. (1)

K. Kolluru, S. Saha, and S. D. Gupta, “Cavity enhanced interference of orthogonal modes in a birefringent medium,” Opt. Comm. 410, 836–840 (2018).
[Crossref]

Opt. Commun. (1)

L. Tong, F. Zi, X. Guo, and J. Lou, “Optical microfibers and nanofibers: a tutorial,” Opt. Commun. 285, 4641–4647 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (2)

F. L. Kien, S. D. Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: efficient coupling of light to guided modes,” Phys. Rev. A 72, 032509 (2005).
[Crossref]

C. Viviescas and G. Hackenbroich, “Field quantization for open optical cavities,” Phys. Rev. A 67, 013805 (2003).
[Crossref]

Phys. Rev. Lett. (2)

J. M. Dobrindt and T. J. Kippenberg, “Theoretical analysis of mechanical displacement measurement using a multiple cavity mode transducer,” Phys. Rev. Lett. 104, 033901 (2010).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98, 213904 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[Crossref]

Sci. Rep. (1)

S. Han, L. Cong, H. Lin, B. Xiao, H. Yang, and R. Singh, “Tunable electromagnetically induced transparency in coupled three-dimensional split-ring-resonator metamaterials,” Sci. Rep. 6, 20801 (2016).
[Crossref] [PubMed]

Other (1)

H. A. Haus, Waves and Fields in Optoelectronics (Prentice Hall, 1984), Vol. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the PhC nanofiber cavity. The inset shows the SEM image of a typical section of the PhC nanofiber. (b) The SEM image showing the cross-sectional view of the PhC structure at a nanocrater position. (c) The transmission spectra of the nanofiber sample after the fabrication of the first (black traces) and second (blue traces) PhC, measured for Y-pol (upper panel) and X-pol (lower panel). (d) The expanded transmission (blue traces) and reflection (red traces) spectra of the nanofiber cavity for the X-pol, measured at four different regions (i), (ii), (iii) and (iv) marked by the dashed boxes in the lower panel of (c). The inset of panel (i) shows a single mode in region (i).
Fig. 2
Fig. 2 Typical spectral line shapes observed in region (iv). (a) and (b) show the reflection (magenta traces) and transmission (gray traces) spectra measured when the cavity is excited with Y-pol and the corresponding line shapes when the cavity is excited with X-pol, respectively. The green (transmission) and cyan (reflection) traces show the fitted curves using the multiple-mode interference model. The black traces show the fitted curves using the phenomenological Fano line shape formula for data points within the region marked by the dashed lines. (c,d) and (e,f) show two more sets of spectra measured in the same region.
Fig. 3
Fig. 3 Magenta and gray traces show the experimentally measured reflection and transmission spectra in the region (iii) when the cavity is excited with X-pol. The cyan (reflection) and green (transmission) traces show the theoretical fits using the multiple-mode interference model. (a) shows three consecutive modes measured in this region. The dashed box shows a case when the detuning between the polarization modes is ∼ 0.83 GHz. (b) and (c) show the two cases when the detunings between the polarization modes are −3.05 and 1.36 GHz, respectively.
Fig. 4
Fig. 4 (a) Magenta trace shows the experimentally measured reflection spectra in the region (ii), when the cavity is excited with X-pol and cyan trace show the theoretical fit using the multiple-mode interference model. (b) Red and blue dots show the detuning of the modified Y- and X-pol modes with respect to the uncoupled Y-pol mode. The horizontal axis represents the detuning between the uncoupled modes. Whereas the vertical axis denotes the detunings of the coupled modes with respect to the uncoupled mode of Y-pol. Magenta and cyan dashed lines represent the detuning between the uncoupled modes. The red and blue traces show the theoretical fit to the measured detunings of the coupled modes.
Fig. 5
Fig. 5 (a) Dependency of g on the total single-pass polarization rotation (θ). The vertical axis is normalized to the FSR of the cavity. (b) and (c) The measured intensity pattern of the light scattered by the nanofiber segment as a function of the input polarization of the guided light and the distance (Z) along the fiber axis for sample (i) and (ii) respectively. Colorbar represents the normalized intensity.

Tables (1)

Tables Icon

Table 1 Estimated fitting parameters in GHz unit.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d c x p d t = κ x 2 c x i Δ x p c x p + κ x i a x in i g c y
d c y p d t = κ y 2 c y i Δ y q c y q + κ y i a y in i g c x ,
a x in + a x out = κ x i c x , b x out = κ x o c x ,
a y in + a y out = κ y i c y , b y out = κ y o c y
t x = κ x i κ x o ( κ y 2 + i Δ y ˜ ) ( κ x 2 + i Δ x ˜ ) ( κ y 2 + i Δ y ˜ ) + g 2
r x = κ x i ( κ y 2 + i Δ y ˜ ) ( κ x 2 + i Δ x ˜ ) ( κ y 2 + i Δ y ˜ ) + g 2 1 .
t y = i g κ x i κ y o ( κ x 2 + i Δ x ˜ ) ( κ y 2 + i Δ y ˜ ) + g 2
r y = i g κ x i κ y i ( κ x 2 + i Δ x ˜ ) ( κ y 2 + i Δ y ˜ ) + g 2
1 Δ x ˜ = p ( 1 ) p Δ x p = p = n p = n ( 1 ) p Δ x 0 + p FSR x
1 Δ y ˜ = q ( 1 ) q Δ x q = q = n q = n ( 1 ) q Δ y 0 + q FSR y
ω ± = Δ x 0 + Δ y 0 2 ± ( Δ x 0 + Δ y 0 2 ) 2 + g 2 .
y = 1 q 2 + 1 ( q κ eff + ω ) 2 κ eff 2 + ω 2 ,

Metrics