Abstract

In this work, we develop a new opto-acouto-fludic microsopic system, which employs a high-speed one-dimensional galvanometer scanner and an ultrafast pulse laser (600 kHz). The new system has achieved a high two-dimensional frame rate of up to 2500 Hz with a lateral resolution of 1.7 μm and an axial resolution of 36 μm at the imaging plane. To demonstrate the improved performance of the new system compared to our previous one, we carried out experiments to image the flowing droplets generated with T-junction and flow focusing configurations. We also successfully imaged dynamic migration of magneto particles subjected to non-uniform magnetic field in the microchannel. The results suggest that our new system has sufficient spatiotemporal resolutions to carry out studies for high throughput microfluidic applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scanning two-photon continuous flow lithography for synthesis of high-resolution 3D microparticles

Lucas A. Shaw, Samira Chizari, Maxim Shusteff, Hamed Naghsh-Nilchi, Dino Di Carlo, and Jonathan B. Hopkins
Opt. Express 26(10) 13543-13548 (2018)

Study of disklike microdroplet cavities directly coupled to liquid-core waveguides

Te-Chang Chen, Da-Wei Shen, Yao-Tsu Yang, Li-Chung Hsu, Chieh-Yang Huang, Ya-Tzu Chen, and Ming-Chang M. Lee
Opt. Lett. 37(19) 4056-4058 (2012)

Measuring the pressures across microfluidic droplets with an optical tweezer

Yuhang Jin, Antony Orth, Ethan Schonbrun, and Kenneth B. Crozier
Opt. Express 20(22) 24450-24464 (2012)

References

  • View by:
  • |
  • |
  • |

  1. P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
    [Crossref] [PubMed]
  2. A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
    [Crossref] [PubMed]
  3. W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
    [Crossref] [PubMed]
  4. G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
    [Crossref] [PubMed]
  5. K. Kant and S. Abalde-Cela, “Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing,” Biosensors (Basel) 8(3), 62 (2018).
    [PubMed]
  6. Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).
  7. R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
    [Crossref]
  8. Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
    [Crossref] [PubMed]
  9. P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in muTAS?” Anal. Bioanal. Chem. 382(8), 1771–1782 (2005).
    [Crossref] [PubMed]
  10. Y. Zhu and Q. Fang, “Analytical detection techniques for droplet microfluidics--a review,” Anal. Chim. Acta 787(13), 24–35 (2013).
    [Crossref] [PubMed]
  11. M. Ugawa, C. Lei, T. Nozawa, T. Ideguchi, D. Di Carlo, S. Ota, Y. Ozeki, and K. Goda, “High-throughput optofluidic particle profiling with morphological and chemical specificity,” Opt. Lett. 40(20), 4803–4806 (2015).
    [Crossref] [PubMed]
  12. E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
    [Crossref]
  13. S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
    [Crossref] [PubMed]
  14. C. Song and S. Tan, “A Perspective on the Rise of Optofluidics and the Future,” Micromachines (Basel) 8(5), 152 (2017).
    [Crossref]
  15. D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
    [Crossref] [PubMed]
  16. L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
    [Crossref] [PubMed]
  17. M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
    [Crossref]
  18. E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
    [Crossref] [PubMed]
  19. E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
    [Crossref] [PubMed]
  20. C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
    [Crossref] [PubMed]
  21. T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
    [Crossref] [PubMed]
  22. W. Qin, T. Jin, H. Guo, and L. Xi, “Large-field-of-view optical resolution photoacoustic microscopy,” Opt. Express 26(4), 4271–4278 (2018).
    [Crossref] [PubMed]
  23. T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
    [Crossref] [PubMed]
  24. N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip 6(8), 974–980 (2006).
    [Crossref] [PubMed]
  25. J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
    [Crossref] [PubMed]
  26. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
    [Crossref] [PubMed]
  27. Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
    [Crossref] [PubMed]
  28. Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).
  29. M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
    [Crossref] [PubMed]
  30. L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
    [Crossref] [PubMed]
  31. A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
    [Crossref]
  32. V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
    [Crossref] [PubMed]
  33. T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
    [Crossref]
  34. H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).
  35. S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
    [Crossref]
  36. C. Girabawe and S. Fraden, “An image-driven drop-on-demand system,” Sensor. Actuat. B-chem. 238, 532–539 (2017).
  37. W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
    [Crossref]
  38. S. L. Anna and H. C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device,” Phys. Fluids 18(12), 121512 (2006).
    [Crossref]

2018 (7)

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

K. Kant and S. Abalde-Cela, “Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing,” Biosensors (Basel) 8(3), 62 (2018).
[PubMed]

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

W. Qin, T. Jin, H. Guo, and L. Xi, “Large-field-of-view optical resolution photoacoustic microscopy,” Opt. Express 26(4), 4271–4278 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

2017 (5)

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
[Crossref] [PubMed]

C. Girabawe and S. Fraden, “An image-driven drop-on-demand system,” Sensor. Actuat. B-chem. 238, 532–539 (2017).

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

C. Song and S. Tan, “A Perspective on the Rise of Optofluidics and the Future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

2016 (1)

G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
[Crossref] [PubMed]

2015 (1)

2013 (2)

Y. Zhu and Q. Fang, “Analytical detection techniques for droplet microfluidics--a review,” Anal. Chim. Acta 787(13), 24–35 (2013).
[Crossref] [PubMed]

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

2012 (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

2011 (2)

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

2010 (1)

V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
[Crossref] [PubMed]

2009 (3)

W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
[Crossref]

M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
[Crossref]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

2007 (1)

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

2006 (7)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

S. L. Anna and H. C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device,” Phys. Fluids 18(12), 121512 (2006).
[Crossref]

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip 6(8), 974–980 (2006).
[Crossref] [PubMed]

2005 (1)

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in muTAS?” Anal. Bioanal. Chem. 382(8), 1771–1782 (2005).
[Crossref] [PubMed]

2004 (3)

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).

2003 (1)

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

1996 (1)

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

1979 (1)

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

Abalde-Cela, S.

K. Kant and S. Abalde-Cela, “Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing,” Biosensors (Basel) 8(3), 62 (2018).
[PubMed]

Anna, S. L.

W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
[Crossref]

S. L. Anna and H. C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device,” Phys. Fluids 18(12), 121512 (2006).
[Crossref]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Baret, J. C.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Bisegna, P.

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Bontoux, N.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Borenstein, J.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Burke, D. T.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Burns, M. A.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Businaro, L.

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Buurman, G.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Calvo, A. M. G.

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Caselli, F.

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Cesaro-Tadic, S.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Chai, J. C. K.

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Chen, D.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Chen, J.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Chen, Q.

Choi, C. H.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Chu, B.

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

Chueca, P. R.

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Cristini, V.

Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Delamarche, E.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

deMello, A. J.

M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
[Crossref]

den Toonder, J. M. J.

G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
[Crossref] [PubMed]

Dernick, G.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Di Carlo, D.

Ding, H.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Dittrich, P. S.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in muTAS?” Anal. Bioanal. Chem. 382(8), 1771–1782 (2005).
[Crossref] [PubMed]

Du, G.

G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
[Crossref] [PubMed]

Edel, J. B.

M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
[Crossref]

El Harrak, A.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Evarts, E. R.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Fair, R. B.

H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).

Fan, B.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Fang, Q.

G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
[Crossref] [PubMed]

Y. Zhu and Q. Fang, “Analytical detection techniques for droplet microfluidics--a review,” Anal. Chim. Acta 787(13), 24–35 (2013).
[Crossref] [PubMed]

Fattinger, C.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Fields, Y.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Fisher, J. S.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Foerster, B.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Fraden, S.

C. Girabawe and S. Fraden, “An image-driven drop-on-demand system,” Sensor. Actuat. B-chem. 238, 532–539 (2017).

Galanzha, E. I.

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Ge, X.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Gilbert, J.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

Girabawe, C.

C. Girabawe and S. Fraden, “An image-driven drop-on-demand system,” Sensor. Actuat. B-chem. 238, 532–539 (2017).

Goda, K.

Griffiths, A. D.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Gulari, E.

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

Guo, H.

He, L.

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

Herrada, M. A.

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Heyman, J. A.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

Huang, C.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Huang, T.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Hutchison, J. B.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Ideguchi, T.

Jiang, H.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

Jin, T.

W. Qin, T. Jin, H. Guo, and L. Xi, “Large-field-of-view optical resolution photoacoustic microscopy,” Opt. Express 26(4), 4271–4278 (2018).
[Crossref] [PubMed]

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
[Crossref] [PubMed]

Johnsons, B. N.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Jones, D.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Juncker, D.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Kaiser, A. R.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Kant, K.

K. Kant and S. Abalde-Cela, “Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing,” Biosensors (Basel) 8(3), 62 (2018).
[PubMed]

Ke, B.

Khademhosseini, A.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Kleijn, C. R.

V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
[Crossref] [PubMed]

Kreutzer, M. T.

V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
[Crossref] [PubMed]

Kropshofer, H.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Langer, R.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

Lanni, C.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Lanni, F.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Larson, J. W.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Laurent-Puig, P.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Le Corre, D.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Lee, A. I.

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, A. P.

Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Lee, H.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Lee, W.

W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
[Crossref]

Lei, C.

Li, W.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Lim, J.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Link, D. R.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Majetich, S. A.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Man, F. P.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Manz, A.

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in muTAS?” Anal. Bioanal. Chem. 382(8), 1771–1782 (2005).
[Crossref] [PubMed]

Martens, S.

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

Mastrangelo, C. H.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Mayer, H. C.

S. L. Anna and H. C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device,” Phys. Fluids 18(12), 121512 (2006).
[Crossref]

Mazutis, L.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Michel, B.

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

Millot, F.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Mo, X.

Mosquera, M. F.

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Nguyen, N. T.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Ninno, A. D.

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Nozawa, T.

Ong, W. L.

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

Ota, S.

Ozeki, Y.

Pamme, N.

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip 6(8), 974–980 (2006).
[Crossref] [PubMed]

Pekin, D.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Pollack, M. G.

H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).

Prieto, R. G.

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Qi, W.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
[Crossref] [PubMed]

Qin, W.

Qu, L.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Ranganathan, N.

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

Reale, R.

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Ren, H.

H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).

Salem, C. B.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Sammarco, T. S.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Shashkov, E. V.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Skhiri, Y.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Song, C.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

C. Song and S. Tan, “A Perspective on the Rise of Optofluidics and the Future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

Spring, P. M.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Srisa-Art, M.

M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
[Crossref]

Stone, H. A.

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Suen, J. Y.

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Taly, V.

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

Tan, S.

C. Song and S. Tan, “A Perspective on the Rise of Optofluidics and the Future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

Tan, S. H.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Tan, Y. C.

Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

Tilton, R. D.

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Ting, T. H.

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Tsunashuma, Y.

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

Ugawa, M.

Ung, W. L.

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

Vacanti, J. P.

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

van Steijn, V.

V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
[Crossref] [PubMed]

Walker, L. M.

W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
[Crossref]

Wang, J.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Wang, K.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Webster, J. R.

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Weitz, D. A.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

Wilhelm, C.

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip 6(8), 974–980 (2006).
[Crossref] [PubMed]

Wong, T. N.

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Xi, L.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

W. Qin, T. Jin, H. Guo, and L. Xi, “Large-field-of-view optical resolution photoacoustic microscopy,” Opt. Express 26(4), 4271–4278 (2018).
[Crossref] [PubMed]

T. Jin, H. Guo, H. Jiang, B. Ke, and L. Xi, “Portable optical resolution photoacoustic microscopy (pORPAM) for human oral imaging,” Opt. Lett. 42(21), 4434–4437 (2017).
[Crossref] [PubMed]

Q. Chen, T. Jin, W. Qi, X. Mo, and L. Xi, “Label-free photoacoustic imaging of the cardio-cerebrovascular development in the embryonic zebrafish,” Biomed. Opt. Express 8(4), 2359–2367 (2017).
[Crossref] [PubMed]

Xie, H.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

Xu, B.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Xu, J.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Xu, Y.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Yan, R.

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

Yao, L.

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

Yap, Y. F.

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Ye, Y.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Yobas, L.

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

Zhang, A.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Zhang, L.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Zhang, W.

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

Zhao, S.

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

Zhao, Y.

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Zharov, V. P.

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Zheng, J.

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

Zhu, Y.

Y. Zhu and Q. Fang, “Analytical detection techniques for droplet microfluidics--a review,” Anal. Chim. Acta 787(13), 24–35 (2013).
[Crossref] [PubMed]

ACS Nano (1)

J. Lim, C. Lanni, E. R. Evarts, F. Lanni, R. D. Tilton, and S. A. Majetich, “Magnetophoresis of nanoparticles,” ACS Nano 5(1), 217–226 (2011).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

P. S. Dittrich and A. Manz, “Single-molecule fluorescence detection in microfluidic channels--the Holy Grail in muTAS?” Anal. Bioanal. Chem. 382(8), 1771–1782 (2005).
[Crossref] [PubMed]

Anal. Chim. Acta (2)

Y. Zhu and Q. Fang, “Analytical detection techniques for droplet microfluidics--a review,” Anal. Chim. Acta 787(13), 24–35 (2013).
[Crossref] [PubMed]

G. Du, Q. Fang, and J. M. J. den Toonder, “Microfluidics for cell-based high throughput screening platforms - A review,” Anal. Chim. Acta 903, 36–50 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

T. H. Ting, Y. F. Yap, N. T. Nguyen, T. N. Wong, J. C. K. Chai, and L. Yobas, “Thermally mediated breakup of drops in microchannels,” Appl. Phys. Lett. 89(23), 234101 (2006).
[Crossref]

S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using ‘flow focusing’ in microchannels,” Appl. Phys. Lett. 82(3), 364–366 (2003).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (1)

M. Srisa-Art, A. J. deMello, and J. B. Edel, “High-Throughput DNA Assays Using Picoliter Reactor Volumes,” Biophys. J. 96(3), 544 (2009).
[Crossref]

Biosens. Bioelectron. (1)

Y. Zhao, K. Wang, D. Chen, B. Fan, Y. Xu, Y. Ye, J. Wang, J. Chen, and C. Huang, “Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells,” Biosens. Bioelectron. 111, 138–143 (2018).
[Crossref] [PubMed]

Biosensors (Basel) (1)

K. Kant and S. Abalde-Cela, “Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing,” Biosensors (Basel) 8(3), 62 (2018).
[PubMed]

Cancer Res. (1)

E. I. Galanzha, E. V. Shashkov, P. M. Spring, J. Y. Suen, and V. P. Zharov, “In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma cells using two-color photoacoustic flow cytometry with a diode laser,” Cancer Res. 69(20), 7926–7934 (2009).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, and D. A. Weitz, “Microfluidic fabrication of microparticles for biomedical applications,” Chem. Soc. Rev. 47(15), 5646–5683 (2018).
[Crossref] [PubMed]

J. Biophotonics (1)

T. Jin, H. Guo, L. Yao, H. Xie, H. Jiang, and L. Xi, “Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms,” J. Biophotonics 11(4), e201700250 (2018).
[Crossref] [PubMed]

J. Chem. Phys. (1)

E. Gulari, E. Gulari, Y. Tsunashuma, and B. Chu, “Photon correlation spectroscopy of particle distributions,” J. Chem. Phys. 70(8), 3965–3972 (1979).
[Crossref]

Lab Chip (7)

S. Cesaro-Tadic, G. Dernick, D. Juncker, G. Buurman, H. Kropshofer, B. Michel, C. Fattinger, and E. Delamarche, “High-sensitivity miniaturized immunoassays for tumor necrosis factor α using microfluidic systems,” Lab Chip 4(6), 563–569 (2004).
[Crossref] [PubMed]

D. Pekin, Y. Skhiri, J. C. Baret, D. Le Corre, L. Mazutis, C. B. Salem, F. Millot, A. El Harrak, J. B. Hutchison, J. W. Larson, D. R. Link, P. Laurent-Puig, A. D. Griffiths, and V. Taly, “Quantitative and sensitive detection of rare mutations using droplet-based microfluidics,” Lab Chip 11(13), 2156–2166 (2011).
[Crossref] [PubMed]

C. Song, T. Jin, R. Yan, W. Qi, T. Huang, H. Ding, S. H. Tan, N. T. Nguyen, and L. Xi, “Opto-acousto-fluidic microscopy for three-dimensional label-free detection of droplets and cells in microchannels,” Lab Chip 18(9), 1292–1297 (2018).
[Crossref] [PubMed]

N. Pamme and C. Wilhelm, “Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis,” Lab Chip 6(8), 974–980 (2006).
[Crossref] [PubMed]

Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, “Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting,” Lab Chip 4(4), 292–298 (2004).
[Crossref] [PubMed]

L. Yobas, S. Martens, W. L. Ong, and N. Ranganathan, “High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets,” Lab Chip 6(8), 1073–1079 (2006).
[Crossref] [PubMed]

V. van Steijn, C. R. Kleijn, and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic T-junctions,” Lab Chip 10(19), 2513–2518 (2010).
[Crossref] [PubMed]

Methods (1)

E. I. Galanzha and V. P. Zharov, “Photoacoustic flow cytometry,” Methods 57(3), 280–296 (2012).
[Crossref] [PubMed]

Microfluid. Nanofluidics (1)

R. Reale, A. D. Ninno, L. Businaro, P. Bisegna, and F. Caselli, “Electrical measurement of cross-sectional position of particles flowing through a microchannel,” Microfluid. Nanofluidics 22(4), 41 (2018).
[Crossref]

Micromachines (Basel) (1)

C. Song and S. Tan, “A Perspective on the Rise of Optofluidics and the Future,” Micromachines (Basel) 8(5), 152 (2017).
[Crossref]

Nat. Phys. (1)

A. M. G. Calvo, R. G. Prieto, P. R. Chueca, M. A. Herrada, and M. F. Mosquera, “Focusing capillary jets close to the continuum limit,” Nat. Phys. 3(10), 737–742 (2007).
[Crossref]

Nat. Protoc. (1)

L. Mazutis, J. Gilbert, W. L. Ung, D. A. Weitz, A. D. Griffiths, and J. A. Heyman, “Single-cell analysis and sorting using droplet-based microfluidics,” Nat. Protoc. 8(5), 870–891 (2013).
[Crossref] [PubMed]

Nat. Rev. Drug Discov. (1)

P. S. Dittrich and A. Manz, “Lab-on-a-chip: microfluidics in drug discovery,” Nat. Rev. Drug Discov. 5(3), 210–218 (2006).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Fluids (2)

W. Lee, L. M. Walker, and S. L. Anna, “Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing,” Phys. Fluids 21(3), 032103 (2009).
[Crossref]

S. L. Anna and H. C. Mayer, “Microscale tipstreaming in a microfluidic flow focusing device,” Phys. Fluids 18(12), 121512 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (2)

A. Khademhosseini, R. Langer, J. Borenstein, and J. P. Vacanti, “Microscale technologies for tissue engineering and biology,” Proc. Natl. Acad. Sci. U.S.A. 103(8), 2480–2487 (2006).
[Crossref] [PubMed]

M. A. Burns, C. H. Mastrangelo, T. S. Sammarco, F. P. Man, J. R. Webster, B. N. Johnsons, B. Foerster, D. Jones, Y. Fields, A. R. Kaiser, and D. T. Burke, “Microfabricated structures for integrated DNA analysis,” Proc. Natl. Acad. Sci. U.S.A. 93(11), 5556–5561 (1996).
[Crossref] [PubMed]

Sensor. Actuat. B-chem. (1)

C. Girabawe and S. Fraden, “An image-driven drop-on-demand system,” Sensor. Actuat. B-chem. 238, 532–539 (2017).

Sensor. Actuat. B. (2)

H. Ren, R. B. Fair, and M. G. Pollack, “Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering,” Sensor. Actuat. B. 98(2), 319–327 (2004).

Y. C. Tan, V. Cristini, and A. P. Lee, “Monodispersed microfluidic droplet generation by shear focusing microfluidic device,” Sensor. Actuat. B. 114(1), 350–356 (2006).

Trac-Trend. Anal. Chem. (1)

Y. Zhang, S. Zhao, J. Zheng, and L. He, “Surface-enhanced Raman spectroscopy (SERS) combined techniques for high-performance detection and characterization,” Trac-Trend. Anal. Chem. 90, 1–13 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic illustration of the opto-acousto-fluidic microscopic system. PC: personal computer, DAQ: data acquisition card, FG: function generator, L1: lens 1, L2: lens 2, PH: pinhole, OBJ: objective, UST: ultrasound transducer, FC: fiber coupler, CL: collimator lens, GVS: galvanometer scanner. (b) The layout of the imaging interface. (c) Evaluation of the lateral resolution. EXP: experiment, ESP: edge spread function. (d) Evaluation of the axial resolution. (e) Sensitivity comparison between cylindrically focused transducer (G1) and spherically focused high-frequency transducer (G2).
Fig. 2
Fig. 2 Imaging droplet with G1 and G2 systems. (a) Droplet imaged by G1 system with lateral resolution of 3.2 μm, axial resolution of 60 μm, and resolution in flow direction of 23 μm. The total flow rate is 7 μl/min, and the flow rate ratio is 1. (b) Droplet imaged by G2 system with lateral resolution of 1.7 μm, axial resolution of 36 μm, and resolution in flow direction of 5.8 μm. The total flow rate is 7 μl/min, and the flow rate ratio is 1. (c) Comparison of normalized pixel number of the imaged droplets retrieved at different total flow rates between the B-scan rates of 500 Hz and 2500 Hz. The inset illustrates the droplets formed at a T-junction. (a) and (b) share the same scale bar.
Fig. 3
Fig. 3 Imaging and monitoring of magneto-particles migrating in microchannels. (a) Imaging magneto-particles without applying magnetic field. (b) Imaging magneto-particles with magnet allocated at the lower side of microchannel (c) Imaging micro- particles with magnet at upper side of microchannel. (d) ~(f) The signal profiles along the transverse direction of the microchannel corresponding to (a) ~(c), respectively. (a), (b) and (c) share the same scale bar.
Fig. 4
Fig. 4 Imaging of droplets generated with flow-focusing configuration. (a) Imaged droplet under flow rates of Qi = 0.6 μl/min and Q0 = 1.5 μl/min. (b) Imaged droplet under flow rates of Qi = 0.6 μl/min and Q0 = 6 μl/min. (c) Imaged droplet under flow rates of Qi = 0.6 μl/min and Q0 = 15 μl/min. (d) The schematic of flow focusing device. (a), (b) and (c) share the same scale bar.

Tables (1)

Tables Icon

Table 1 The comparison between the G1 andG2 systems

Metrics