Abstract

We report on the design, realization, and performance of novel quartz tuning forks (QTFs) optimized for quartz-enhanced photoacoustic spectroscopy (QEPAS). Starting from a QTF geometry designed to provide a fundamental flexural in-plane vibrational mode resonance frequency of ~16 kHz, with a quality factor of 15,000 at atmospheric pressure, two novel geometries have been realized: a QTF with T-shaped prongs and a QTF with prongs having rectangular grooves carved on both surface sides. The QTF with grooves showed the lowest electrical resistance, while the T-shaped prongs QTF provided the best photoacoustic response in terms of signal-to-noise ratio (SNR). When acoustically coupled with a pair of micro-resonator tubes, the T-shaped QTF provides a SNR enhancement of a factor of 60 with respect to the bare QTF, which represents a record value for mid-infrared QEPAS sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy

Pietro Patimisco, Angelo Sampaolo, Marilena Giglio, Verena Mackowiak, Hubert Rossmadl, Bruno Gross, Alex Cable, Frank K. Tittel, and Vincenzo Spagnolo
Opt. Lett. 43(8) 1854-1857 (2018)

Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone

Marilena Giglio, Arianna Elefante, Pietro Patimisco, Angelo Sampaolo, Fabrizio Sgobba, Hubert Rossmadl, Verena Mackowiak, Hongpeng Wu, Frank K. Tittel, Lei Dong, and Vincenzo Spagnolo
Opt. Express 27(4) 4271-4280 (2019)

Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy

Frank K. Tittel, Angelo Sampaolo, Pietro Patimisco, Lei Dong, Antonina Geras, Tomasz Starecki, and Vincenzo Spagnolo
Opt. Express 24(6) A682-A692 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
    [Crossref]
  2. I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
    [Crossref] [PubMed]
  3. L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
    [Crossref] [PubMed]
  4. T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
    [Crossref] [PubMed]
  5. P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
    [Crossref]
  6. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  7. L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
    [Crossref]
  8. P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).
  9. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
    [Crossref]
  10. G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
    [Crossref]
  11. A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
    [Crossref]
  12. L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
    [Crossref] [PubMed]
  13. P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
    [Crossref] [PubMed]
  14. A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
    [Crossref] [PubMed]
  15. H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
    [Crossref]
  16. A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
    [Crossref]
  17. F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
    [Crossref] [PubMed]
  18. H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
    [Crossref]
  19. H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
    [Crossref]
  20. P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).
  21. P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
    [Crossref]
  22. F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
    [Crossref]
  23. Y. Jimbo and K. Itao, “Energy loss of a cantilever vibrator,” J. Horological Inst. Jpn. 47, 1–15 (1968).
  24. C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1930).
    [Crossref]
  25. P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
    [Crossref] [PubMed]
  26. A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
    [Crossref] [PubMed]
  27. M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
    [Crossref]
  28. Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
    [Crossref] [PubMed]
  29. H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).
  30. Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).
  31. http://www.hitran.org/

2018 (3)

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

2017 (3)

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

2016 (5)

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

2015 (1)

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

2014 (2)

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (2)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

2011 (2)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

2010 (1)

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

2009 (1)

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
[Crossref] [PubMed]

2007 (1)

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

2006 (2)

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
[Crossref]

2003 (1)

Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).

1995 (1)

H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).

1992 (1)

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

1985 (1)

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

1968 (1)

Y. Jimbo and K. Itao, “Energy loss of a cantilever vibrator,” J. Horological Inst. Jpn. 47, 1–15 (1968).

1930 (1)

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1930).
[Crossref]

Agraït, N.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
[Crossref] [PubMed]

Ayazi, F.

Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).

Bai, W.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Bartalini, S.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Beere, H. E.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

Bernacki, B. E.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Blom, F. R.

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

Borri, S.

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Bouwstra, S.

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

Cable, A.

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Cancio, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Castellanos-Gomez, A.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
[Crossref] [PubMed]

Chen, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

De Natale, P.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Diebold, G. J.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Dong, L.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Elwenspoek, M.

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

Erbil, A.

Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).

Fluitman, J. H. J.

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

Galli, I.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Geras, A.

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

Giglio, M.

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Giusfredi, G.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Gross, B.

Halonen, L.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Hao, Z.

Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).

Hieta, T.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Hirata, M.

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

Hodgkinson, J.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Hosaka, H.

H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).

Itao, K.

H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).

Y. Jimbo and K. Itao, “Energy loss of a cantilever vibrator,” J. Horological Inst. Jpn. 47, 1–15 (1968).

Jia, S.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Jimbo, Y.

Y. Jimbo and K. Itao, “Energy loss of a cantilever vibrator,” J. Horological Inst. Jpn. 47, 1–15 (1968).

Kokubun, K.

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

Kosterev, A. A.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
[Crossref]

Kriesel, J.

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Kuroda, S.

H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).

Lewicki, R.

Li, S.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

Ma, W.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Mackowiak, V.

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Mazzotti, D.

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Mosely, T. S.

A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
[Crossref]

Nakayama, K.

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

Ono, M.

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

Patimisco, P.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Pei, K.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Qin, Y.

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Reifenberger, R.

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Ritchie, D. A.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

Rossmadl, H.

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Rubio-Bollinger, G.

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
[Crossref] [PubMed]

Sampaolo, A.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Scamarcio, G.

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

Spagnolo, V.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Starecki, T.

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

Tatam, R. P.

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Thomazy, D.

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Tittel, F. K.

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

P. Patimisco, A. Sampaolo, M. Giglio, V. Mackowiak, H. Rossmadl, B. Gross, A. Cable, F. K. Tittel, and V. Spagnolo, “Octupole electrode pattern for tuning forks vibrating at the first overtone mode in quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 43(8), 1854–1857 (2018).
[Crossref] [PubMed]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

F. K. Tittel, A. Sampaolo, P. Patimisco, L. Dong, A. Geras, T. Starecki, and V. Spagnolo, “Analysis of overtone flexural modes operation in quartz-enhanced photoacoustic spectroscopy,” Opt. Express 24(6), A682–A692 (2016).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

L. Dong, V. Spagnolo, R. Lewicki, and F. K. Tittel, “Ppb-level detection of nitric oxide using an external cavity quantum cascade laser based QEPAS sensor,” Opt. Express 19(24), 24037–24045 (2011).
[Crossref] [PubMed]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

Tomberg, T.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Vainio, M.

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Vitiello, M. S.

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

Wu, H.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Wysocki, G.

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

Xiao, L.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Xiong, L.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Yin, W.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Yin, X.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Yu, F.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Zener, C.

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1930).
[Crossref]

Zhang, L.

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Zhao, X.

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Zheng, H.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

Adv. Phys. X (1)

P. Patimisco, A. Sampaolo, H. Zheng, L. Dong, F. K. Tittel, and V. Spagnolo, “Quartz enhanced photoacoustic spectrophones exploiting custom tuning forks: a review,” Adv. Phys. X 2, 169–187 (2016).

Analyst (Lond.) (1)

P. Patimisco, S. Borri, A. Sampaolo, H. E. Beere, D. A. Ritchie, M. S. Vitiello, G. Scamarcio, and V. Spagnolo, “A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser,” Analyst (Lond.) 139(9), 2079–2087 (2014).
[Crossref] [PubMed]

Appl. Phys. B (4)

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Mid-infrared fiber-coupled QCL-QEPAS sensor,” Appl. Phys. B 112(1), 25–33 (2013).
[Crossref]

G. Wysocki, A. A. Kosterev, and F. K. Tittel, “Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm,” Appl. Phys. B 85(2-3), 301–306 (2006).
[Crossref]

A. A. Kosterev, T. S. Mosely, and F. K. Tittel, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN,” Appl. Phys. B 85(2-3), 295–300 (2006).
[Crossref]

L. Dong, A. A. Kosterev, D. Thomazy, and F. K. Tittel, “QEPAS spectrophones: design, optimization, and performance,” Appl. Phys. B 100(3), 627–635 (2010).
[Crossref]

Appl. Phys. Lett. (4)

H. Zheng, L. Dong, A. Sampaolo, P. Patimisco, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Overtone resonance enhanced single-tube on-beam quartz enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 109(11), 111103 (2016).
[Crossref]

A. Sampaolo, P. Patimisco, L. Dong, A. Geras, G. Scamarcio, T. Starecki, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy exploiting tuning fork overtone modes,” Appl. Phys. Lett. 107(23), 231102 (2015).
[Crossref]

H. Zheng, L. Dong, P. Patimisco, H. Wu, A. Sampaolo, X. Yin, S. Li, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Double antinode excited quartz-enhanced photoacoustic spectrophone,” Appl. Phys. Lett. 110(2), 021110 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. K. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Appl. Phys. Rev. (1)

P. Patimisco, A. Sampaolo, L. Dong, F. K. Tittel, and V. Spagnolo, “Recent advances in quartz enhanced photoacoustic sensing,” Appl. Phys. Rev. 5(1), 011106 (2018).
[Crossref]

Biol. Chem. (1)

P. Patimisco, A. Sampaolo, L. Dong, M. Giglio, G. Scamarcio, F. K. Tittel, and V. Spagnolo, ““Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing,” Sensor Actuat,” Biol. Chem. 227, 539–546 (2016).

J. Horological Inst. Jpn. (1)

Y. Jimbo and K. Itao, “Energy loss of a cantilever vibrator,” J. Horological Inst. Jpn. 47, 1–15 (1968).

J. Vac. Sci. Technol. A (1)

M. Hirata, K. Kokubun, M. Ono, and K. Nakayama, “Size effect of a quartz oscillator on its characteristics as a friction vacuum gauge,” J. Vac. Sci. Technol. A 3(3), 1742–1745 (1985).
[Crossref]

J. Vac. Sci. Technol. B (1)

F. R. Blom, S. Bouwstra, M. Elwenspoek, and J. H. J. Fluitman, “Dependence of the quality factor of micromachined silicon beam resonators on pressure and geometry,” J. Vac. Sci. Technol. B 10(1), 19–26 (1992).
[Crossref]

Meas. Sci. Technol. (1)

J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol. 24(1), 012004 (2013).
[Crossref]

Nanotechnology (1)

A. Castellanos-Gomez, N. Agraït, and G. Rubio-Bollinger, “Dynamics of quartz tuning fork force sensors used in scanning probe microscopy,” Nanotechnology 20(21), 215502 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

C. Zener, “Internal friction in solids II. General theory of thermoelastic internal friction,” Phys. Rev. 53(1), 90–99 (1930).
[Crossref]

Phys. Rev. Lett. (1)

I. Galli, S. Bartalini, S. Borri, P. Cancio, D. Mazzotti, P. De Natale, and G. Giusfredi, “Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection,” Phys. Rev. Lett. 107(27), 270802 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Xiong, W. Bai, F. Chen, X. Zhao, F. Yu, and G. J. Diebold, “Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating,” Proc. Natl. Acad. Sci. U.S.A. 114(28), 7246–7249 (2017).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

Y. Qin and R. Reifenberger, “Calibrating a tuning fork for use as a scanning probe microscope force sensor,” Rev. Sci. Instrum. 78(6), 063704 (2007).
[Crossref] [PubMed]

Sci. Rep. (1)

T. Tomberg, M. Vainio, T. Hieta, and L. Halonen, “Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy,” Sci. Rep. 8(1), 1848 (2018).
[Crossref] [PubMed]

Sensor. Actuat,” A-Phys. (1)

Z. Hao, A. Erbil, and F. Ayazi, “An analytical model for support loss in micromachined beam resonators with in-plane flexural vibrations,” Sensor. Actuat,” A-Phys. 109, 156–164 (2003).

Sensor. Actuat. A-Phys. (1)

H. Hosaka, K. Itao, and S. Kuroda, “Damping characteristics of beam-shaped micro-oscillators,” Sensor. Actuat. A-Phys. 49, 87–95 (1995).

Sensors (Basel) (2)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

A. Sampaolo, P. Patimisco, M. Giglio, M. S. Vitiello, H. E. Beere, D. A. Ritchie, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Improved tuning fork for terahertz quartz-enhanced photoacoustic spectroscopy,” Sensors (Basel) 16(4), 439–446 (2016).
[Crossref] [PubMed]

Other (2)

P. Patimisco, A. Sampaolo, V. Mackowiak, H. Rossmadl, A. Cable, F. K. Tittel, and V. Spagnolo, “Loss mechanisms determining the quality factors in quartz tuning forks vibrating at the fundamental and first overtone mode,” IEEE T. Ultrason. Ferr. .
[Crossref]

http://www.hitran.org/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Q-factor values plotted as a function of the resonance frequency for different prong lengths and thicknesses of quartz tuning fork of crystal width w = 0.25 mm, at atmospheric pressure.
Fig. 2
Fig. 2 Stress field distribution for QTF-S08 (a) and QTF-S08-T (b) simulated by using COMSOL MultiPhysics. (c) Normalized stress field intensity σ (●) and resonance frequency (■) as a function of T2 for QTF-S08-T.
Fig. 3
Fig. 3 (a) Front view with sizes of the QTF-S08-G. Dark yellow areas represents grooves applied on both sides of QTF prongs. (b) Cross-section of QTF-S08-G prongs along AA’. (c) Cross-section of the QTF-S08-G prongs along BB’.
Fig. 4
Fig. 4 (a) Circuit diagram for QTF electrical excitation. A sinusoidal voltage is applied to the QTF. The QTF current output is converted to a voltage signal by means of a transimpedance amplifier (TA) with a feedback resistor of RF = 10 MΩ. The signal is then demodulated by a lock-in amplifier (LA). (b) Schematic of the QEPAS trace gas sensor system using a quantum cascade laser as the excitation source. The laser beam is focused between QTF prongs by means of a lens. TEC: Temperature controller. CD: current driver. PC: personal computer. DAQ: Data Acquisition Card. PM: Power Meter.
Fig. 5
Fig. 5 Resonance curves of (a) QTF-S08 (■), (b) QTF-S015 (●), (c) QTF-S08-T (▲) and (c) QTF-S08-G (▼) measured at a fixed excitation level V0 = 0.5 mV at atmospheric pressure in standard air near the fundamental oscillation mode. The red solid lines indicate the best Lorentzian fit.
Fig. 6
Fig. 6 (a) Sketch of a QTF depicting the prong deflection at the fundamental mode while an acoustic source is located between the prongs. The arrow indicates the QTF axis. (b) Normalized QEPAS peak signal acquired at different laser focus position measured from the top of the QTF axis.
Fig. 7
Fig. 7 QEPAS spectral scans of 1.7% water concentration in air for the fundamental flexural mode of QTF-S08 (a), QTF-S08-G (b), QTF-S08-T (c) and QTF-S15 (d). All scans were recorded with a 100 ms lock-in integration time.
Fig. 8
Fig. 8 SNR of QTF-S08, QTF-S08-G, QTF-S08-T and QTF-S15 compared with those acquired for QTF#1, QTF#2 and standard 32.7 KHz-QTF (black bars).
Fig. 9
Fig. 9 QEPAS peak signal as a function of the distance between the tube and the QTF. Solid lines serve as convenient visual guides.
Fig. 10
Fig. 10 QEPAS peak signals measured with three different spectrophones employing acoustic resonator tubes with an ID = 1.41 mm (a), 1.59 mm (b) and 2.06 mm (c) as a function of the tube length. Solid lines serve as convenient visual guides.
Fig. 11
Fig. 11 (a) QEPAS spectral scan of water absorption line acquired with the bare QTF-S08-T (dashed red line) and with a spectrophone composed by QTF-S08-T and a pair of micro-resonator tubes having a length of 12.4 mm and internal diameter of 1.59 mm, both positioned 200 μm far from the QTF (solid black line). (b) Signal-to-noise ratio enhancement (SNRE) of the spectrophone with respect to the bare QTF as a function of tubes internal diameter when the tube length is 12.4 mm. The solid line is a visual guide.

Tables (1)

Tables Icon

Table 1 Resonance frequencies (f0), quality factors (Q) and electrical resistance (R) of QTF-S08, QTF-S08-G, QTF-S08-T, QTF-S15, QTF#1, QTF#2 and standard 32.7 kHz-QTF.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q=3.78 10 5 wT L
T(x)={ T 1 x[0, L 0 ] T 2 x[ L 0 , L 1 ]

Metrics