Abstract

We demonstrate a gain-switched fiber laser, yielding a maximum average power of 1.04 W at 3.46 μm, which is the current record of a pulsed rare-earth-doped fiber laser at the wavelength beyond 3 μm, to our knowledge. The corresponding pulse energy is 10.4 μJ with a repetition rate of 100 kHz. A dual-wavelength pumping scheme consisting of a home-made 1950 nm passively Q-switched fiber laser system with a μs-scale pulse width. A 976 nm continuous wave laser diode was used to gain-switch a double-cladding Er-doped ZBLAN fiber laser cavity. Possible laser-quenching behavior during a single-pump pulse was circumvented for the moderate pump peak power and relatively large-pump pulse width. Synchronous gain-switched pulses were achieved with a tunable repetition rate at a wide range of 55~120 kHz, which is the highest gain-switching repetition rate at this band and only limited by our pulsed-pump source. Moreover, the significance of pump pulse width for repetition rate improvement is also discussed. These results provide an available way to produce high-power pulses at the mid-infrared range of 3~5 μm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm

Nathaniel Bawden, Hiraku Matsukuma, Ori Henderson-Sapir, Elizaveta Klantsataya, Shigeki Tokita, and David J. Ottaway
Opt. Lett. 43(11) 2724-2727 (2018)

Gain-switched fiber laser at 3.55  μm

Frédéric Jobin, Vincent Fortin, Frédéric Maes, Martin Bernier, and Réal Vallée
Opt. Lett. 43(8) 1770-1773 (2018)

Direct generation of 2  W average-power and 232  nJ picosecond pulses from an ultra-simple Yb-doped double-clad fiber laser

Yizhong Huang, Zhengqian Luo, Fengfu Xiong, Yingyue Li, Min Zhong, Zhiping Cai, Huiying Xu, and Hongyan Fu
Opt. Lett. 40(6) 1097-1100 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
    [Crossref]
  2. H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
    [Crossref]
  3. D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
    [Crossref]
  4. J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
    [Crossref]
  5. B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
    [Crossref]
  6. C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
    [Crossref]
  7. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping,” Opt. Lett. 39(3), 493–496 (2014).
    [Crossref] [PubMed]
  8. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
    [Crossref] [PubMed]
  9. O. Henderson-Sapir, S. D. Jackson, and D. J. Ottaway, “Versatile and widely tunable mid-infrared erbium doped ZBLAN fiber laser,” Opt. Lett. 41(7), 1676–1679 (2016).
    [Crossref] [PubMed]
  10. O. Henderson-Sapir, J. Munch, and D. J. Ottaway, “New energy-transfer upconversion process in Er3+:ZBLAN mid-infrared fiber lasers,” Opt. Express 24(7), 6869–6883 (2016).
    [Crossref] [PubMed]
  11. A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 μm dual wavelength pumped erbium-doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52(11), 1600412 (2017).
  12. F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 μm dual-wavelength pumped Erbium doped fiber lasers,” IEEE J. Quantum Electron. 53(2), 1 (2017).
    [Crossref]
  13. N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).
  14. N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
    [Crossref] [PubMed]
  15. Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
    [Crossref] [PubMed]
  16. M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
    [Crossref] [PubMed]
  17. C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er^3+-doped ZBLAN fiber laser around 28 μm,” Opt. Express 25(8), 8816–8827 (2017).
    [Crossref] [PubMed]
  18. H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
    [Crossref] [PubMed]
  19. H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
    [Crossref] [PubMed]
  20. P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
    [Crossref] [PubMed]
  21. F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
    [Crossref] [PubMed]
  22. J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
    [Crossref]
  23. Z. Q. Zhipeng Qin, G. X. Guoqiang Xie, J. M. Jingui Ma, P. Y. Peng Yuan, and L. Q. Liejia Qian, “Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength,” Chin. Opt. Lett. 15(11), 111402 (2017).
    [Crossref]
  24. H. Y. Luo, X. L. Tian, Y. Gao, R. F. Wei, J. F. Li, J. R. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
    [Crossref]
  25. Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).
  26. X. Wu, D. Y. Tang, H. Zhang, and L. M. Zhao, “Dissipative soliton resonance in an all-normal-dispersion erbium-doped fiber laser,” Opt. Express 17(7), 5580–5584 (2009).
    [Crossref] [PubMed]

2018 (9)

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

H. Luo, J. Li, Y. Hai, X. Lai, and Y. Liu, “State-switchable and wavelength-tunable gain-switched mid-infrared fiber laser in the wavelength region around 2.94 μm,” Opt. Express 26(1), 63–79 (2018).
[Crossref] [PubMed]

Z. Qin, T. Hai, G. Xie, J. Ma, P. Yuan, L. Qian, L. Li, L. Zhao, and D. Shen, “Black phosphorus Q-switched and mode-locked mid-infrared Er:ZBLAN fiber laser at 3.5 μm wavelength,” Opt. Express 26(7), 8224–8231 (2018).
[Crossref] [PubMed]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
[Crossref] [PubMed]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
[Crossref] [PubMed]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

H. Y. Luo, X. L. Tian, Y. Gao, R. F. Wei, J. F. Li, J. R. Qiu, and Y. Liu, “Antimonene: a long-term stable two-dimensional saturable absorption material under ambient conditions for the mid-infrared spectral region,” Photon. Res. 6(9), 900–907 (2018).
[Crossref]

2017 (6)

C. Wei, H. Luo, H. Shi, Y. Lyu, H. Zhang, and Y. Liu, “Widely wavelength tunable gain-switched Er^3+-doped ZBLAN fiber laser around 28 μm,” Opt. Express 25(8), 8816–8827 (2017).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

Z. Q. Zhipeng Qin, G. X. Guoqiang Xie, J. M. Jingui Ma, P. Y. Peng Yuan, and L. Q. Liejia Qian, “Mid-infrared Er:ZBLAN fiber laser reaching 3.68 μm wavelength,” Chin. Opt. Lett. 15(11), 111402 (2017).
[Crossref]

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 μm dual wavelength pumped erbium-doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52(11), 1600412 (2017).

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 μm dual-wavelength pumped Erbium doped fiber lasers,” IEEE J. Quantum Electron. 53(2), 1 (2017).
[Crossref]

2016 (3)

2015 (1)

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

2014 (1)

2013 (1)

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

2011 (1)

2009 (1)

2007 (1)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

2006 (1)

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

2004 (1)

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Aydin, Y. O.

Barnes, N. P.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Bawden, N.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
[Crossref] [PubMed]

Bekman, H. H. P. Th.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Bernier, M.

Bérubé, J.-P.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Copic, M.

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Diehl, L.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Fan, D. Y.

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

Feng, G. B.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Fischer, M. L.

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

Fortin, V.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 μm dual-wavelength pumped Erbium doped fiber lasers,” IEEE J. Quantum Electron. 53(2), 1 (2017).
[Crossref]

Fraser, A.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Frayssinous, C.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Gao, Y.

Gorjan, M.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 μm dual wavelength pumped erbium-doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52(11), 1600412 (2017).

M. Gorjan, R. Petkovšek, M. Marinček, and M. Čopič, “High-power pulsed diode-pumped Er:ZBLAN fiber laser,” Opt. Lett. 36(10), 1923–1925 (2011).
[Crossref] [PubMed]

Guoqiang Xie, G. X.

Hai, T.

Hai, Y.

Halmer, D.

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

Henderson-Sapir, O.

Hering, P.

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Huang, K.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Jackson, S. D.

Jingui Ma, J. M.

Jobin, F.

Jost, H. J.

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

Klantsataya, E.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
[Crossref] [PubMed]

Lai, X.

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Lee, H. R.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Li, J.

Li, J. F.

Li, L.

Liejia Qian, L. Q.

Liu, Y.

Luan, K. P.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Luo, H.

Luo, H. Y.

Lyu, Y.

Ma, J.

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Maes, F.

Malouf, A.

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 μm dual wavelength pumped erbium-doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52(11), 1600412 (2017).

Marincek, M.

Matsukuma, H.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
[Crossref] [PubMed]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

Munch, J.

Mürtz, M.

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Ottaway, D. J.

Paradis, P.

Paul, J. B.

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

Peng Yuan, P. Y.

Petkovšek, R.

Pflügl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Qian, L.

Qin, Z.

Qiu, J. R.

Scherer, J. J.

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

Schleijpen, H. M. A.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Shen, D.

Shen, Y. L.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Shi, H.

Tang, D. Y.

Tang, Y. L.

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

Thelen, S.

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

Tian, X. L.

Tokita, S.

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Actively Q-switched dual-wavelength pumped Er3+ :ZBLAN fiber laser at 3.47 µm,” Opt. Lett. 43(11), 2724–2727 (2018).
[Crossref] [PubMed]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

Vallée, R.

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

F. Jobin, V. Fortin, F. Maes, M. Bernier, and R. Vallée, “Gain-switched fiber laser at 3.55 μm,” Opt. Lett. 43(8), 1770–1773 (2018).
[Crossref] [PubMed]

P. Paradis, V. Fortin, Y. O. Aydin, R. Vallée, and M. Bernier, “10 W-level gain-switched all-fiber laser at 2.8 μm,” Opt. Lett. 43(13), 3196–3199 (2018).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “5.6 W monolithic fiber laser at 3.55 μm,” Opt. Lett. 42(11), 2054–2057 (2017).
[Crossref] [PubMed]

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 μm dual-wavelength pumped Erbium doped fiber lasers,” IEEE J. Quantum Electron. 53(2), 1 (2017).
[Crossref]

van den Heuvel, J. C.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

van Putten, F. J. M.

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

Walsh, B. M.

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

Wei, C.

Wei, R. F.

Wu, X.

Xie, G.

Yang, J. L.

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

Ye, X. S.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yi, A. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yu, L.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Yuan, P.

Zhang, H.

Zhang, S. Y.

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

Zhao, L.

Zhao, L. M.

Zhipeng Qin, Z. Q.

Zhong, H. Z.

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

Zhou, S. Q.

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

Zhu, C.

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

Appl. Phys. B (2)

D. Halmer, S. Thelen, P. Hering, and M. Mürtz, “Online monitoring of ethane traces in exhaled breath with a difference frequency generation spectrometer,” Appl. Phys. B 85(2–3), 437–443 (2006).
[Crossref]

J. J. Scherer, J. B. Paul, H. J. Jost, and M. L. Fischer, “Mid-IR difference frequency laser-based sensors for ambient CH4, CO, and N2O monitoring,” Appl. Phys. B 110(2), 271–277 (2013).
[Crossref]

Appl. Phys. Lett. (1)

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, “Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy,” Appl. Phys. Lett. 91(23), 231101 (2007).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

A. Malouf, O. Henderson-Sapir, M. Gorjan, and D. J. Ottaway, “Numerical modeling of 3.5 μm dual wavelength pumped erbium-doped mid-infrared fiber lasers,” IEEE J. Quantum Electron. 52(11), 1600412 (2017).

F. Maes, V. Fortin, M. Bernier, and R. Vallée, “Quenching of 3.4 μm dual-wavelength pumped Erbium doped fiber lasers,” IEEE J. Quantum Electron. 53(2), 1 (2017).
[Crossref]

IEEE Photonics J. (1)

J. L. Yang, H. Z. Zhong, S. Y. Zhang, Y. L. Tang, and D. Y. Fan, “Cascade-gain-switching for generating 3.5-μm nanosecond pulses from monolithic fiber lasers,” IEEE Photonics J. 10(5), 1 (2018).
[Crossref]

J. Lumin. (1)

B. M. Walsh, H. R. Lee, and N. P. Barnes, “Mid infrared lasers for remote sensing applications,” J. Lumin. 169, 400–405 (2016).
[Crossref]

J. Mater. Process. Technol. (1)

C. Frayssinous, V. Fortin, J.-P. Bérubé, A. Fraser, and R. Vallée, “Resonant polymer ablation using a compact 3.44 μm fiber laser,” J. Mater. Process. Technol. 252, 813–820 (2018).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Photon. Res. (1)

Proc. SPIE (3)

Y. L. Shen, K. Huang, S. Q. Zhou, K. P. Luan, L. Yu, A. Q. Yi, G. B. Feng, and X. S. Ye, “Gain-switched 2.8 μm Er3+-doped double-clad ZBLAN fiber laser,” Proc. SPIE 9543, 95431E (2015).

H. H. P. Th. Bekman, J. C. van den Heuvel, F. J. M. van Putten, and H. M. A. Schleijpen, “Development of a mid-infrared laser for study of infrared countermeasures techniques,” Proc. SPIE 5615, 27–38 (2004).
[Crossref]

N. Bawden, H. Matsukuma, O. Henderson-Sapir, E. Klantsataya, S. Tokita, and D. J. Ottaway, “Q-switched dual-wavelength pumped 3.5-μm erbium-doped mid-infrared fiber laser,” Proc. SPIE 10512, 1 (2018).

Sci. Rep. (1)

H. Luo, J. Li, C. Zhu, X. Lai, Y. Hai, and Y. Liu, “Cascaded gain-switching in the mid-infrared region,” Sci. Rep. 7(1), 16891 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of the gain-switched DWP double-cladding Er-doped ZBLAN fiber laser (DM, dichroic mirror; HT, high transmittance; HR, high reflectance). The inset shows the simplified energy diagram with relevant pump and laser transitions.
Fig. 2
Fig. 2 Temporal behaviors at the launched 1950 nm pump power (pulse energy) of (a), (b) 3.48 W (34.8 μJ) (100 kHz) and (c), (d) 6.10 W (61 μJ) (100 kHz). (P976nm = 2.3 W)
Fig. 3
Fig. 3 (a) Output average power versus launched 1950 nm pump power, (b) average power stability within 30 min, (c) optical and RF spectra at the launched 1950 nm pump power of 6.1 W, (d) laser pulse width, time delay, pulse energy, and peak power versus launched 1950 nm pump power. (P976nm = 2.3 W)
Fig. 4
Fig. 4 (a) Seed and laser pulse widths, average power, pulse energy, and peak power versus pump repetition rate (E1950 nm = 50 μJ), (b) pulse trains at different pump repetition rates of 55 kHz, 90 kHz, and 120 kHz.
Fig. 5
Fig. 5 (a) DSR pulse waveform and (b) pulse trains with a repetition rate of 116 kHz at the launched 1960 nm pump power of 6.73 W.

Metrics