Abstract

In the visible light band, the diffraction effect of a diamond-turned surface will cause the optical performance to heavily deteriorate. Due to the insufficient understanding of diffraction effect, post-treatment, such as polishing technology has to be fulfilled. To reveal the origins of diffraction effect of the diamond-turned surface under visible light, theoretical analyses are carried out with consideration of the influencing factors in diamond turning. Simulation results, coupled with experimental observations, demonstrate that the periodic components of surface roughness are responsible for the diffraction light distribution in the horizontal direction of the receiving screen. However, the aperiodic components of surface roughness, derived from defects in material matrix, result in the diffraction spots on the whole receiving screen. To directly eliminate the diffraction effect in diamond turning, a novel method—with control on tool edge quality, material defects, and processing parameters—is proposed. The measurement results prove the effectiveness of this method, and the diffraction-free surface finish without any post-treatment is successfully acquired.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of surface topography on diamond-turned spherical and freeform surfaces

Chih-Yu Huang and Rongguang Liang
Appl. Opt. 56(15) 4466-4473 (2017)

Modeling of surface topography in single-point diamond turning machine

Chih-Yu Huang and Rongguang Liang
Appl. Opt. 54(23) 6979-6985 (2015)

References

  • View by:
  • |
  • |
  • |

  1. W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
    [Crossref]
  2. J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
    [Crossref]
  3. A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
    [Crossref] [PubMed]
  4. E. L. Church and J. M. Zavada, “Residual surface roughness of diamond-turned optics,” Appl. Opt. 14(8), 1788–1795 (1975).
    [Crossref] [PubMed]
  5. L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
    [Crossref]
  6. F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
    [Crossref]
  7. A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann.- Manuf. Tech. 62(1), 315–318 (2013).
    [Crossref]
  8. J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
    [Crossref]
  9. Z. Z. Li, J. M. Wang, X. Q. Peng, L. T. Ho, Z. Q. Yin, S. Y. Li, and C. F. Cheung, “Removal of single point diamond-turning marks by abrasive jet polishing,” Appl. Opt. 50(16), 2458–2463 (2011).
    [Crossref] [PubMed]
  10. Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).
  11. Z. Zhu, S. To, and S. Zhang, “Active control of residual tool marks for freeform optics functionalization by novel biaxial servo assisted fly cutting,” Appl. Opt. 54(25), 7656–7662 (2015).
    [Crossref] [PubMed]
  12. Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
    [Crossref] [PubMed]
  13. C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
    [Crossref]
  14. C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
    [Crossref]
  15. S. Zhang, C. Hellmann, and F. Wyrowski, “Algorithm for the propagation of electromagnetic fields through etalons and crystals,” Appl. Opt. 56(15), 4566–4576 (2017).
    [Crossref] [PubMed]
  16. W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
    [Crossref]
  17. D. Wu, “Research on several key technologies of ultra-precision diamond turning of large-scale micro-structured roller mold (Dissertation),” Harbin Institute of Technology, China (2016).
  18. P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
    [Crossref]
  19. Wehrli, http://rredc.nrel.gov/solar/spectra/am0/wehrli1985.html (1985).

2018 (2)

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

2017 (1)

2016 (2)

J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
[Crossref]

C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
[Crossref]

2015 (1)

2014 (2)

Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

2013 (2)

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann.- Manuf. Tech. 62(1), 315–318 (2013).
[Crossref]

Z. Zhu, X. Zhou, D. Luo, and Q. Liu, “Development of pseudo-random diamond turning method for fabricating freeform optics with scattering homogenization,” Opt. Express 21(23), 28469–28482 (2013).
[Crossref] [PubMed]

2012 (1)

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

2011 (2)

2010 (2)

L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
[Crossref]

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

2005 (1)

P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
[Crossref]

1975 (1)

Beaucamp, A.

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann.- Manuf. Tech. 62(1), 315–318 (2013).
[Crossref]

Cheng, K.

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

Cheung, C. F.

Choi, N.

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
[Crossref] [PubMed]

Church, E. L.

Collins, S. A.

L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
[Crossref]

Dong, S.

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

Duan, F.

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

Dumas, P.

P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
[Crossref]

Duparre, A.

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Fang, F.

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Golini, D.

P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
[Crossref]

Gong, H.

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Harvey, J. E.

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

A. Krywonos, J. E. Harvey, and N. Choi, “Linear systems formulation of scattering theory for rough surfaces with arbitrary incident and scattering angles,” J. Opt. Soc. Am. A 28(6), 1121–1138 (2011).
[Crossref] [PubMed]

He, C. L.

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
[Crossref]

Hellmann, C.

Ho, L. T.

Huang, K. T.

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Ju, B.

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

Krywonos, A.

Li, D.

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

Li, L.

L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
[Crossref]

Li, S. Y.

Li, Z.

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Li, Z. Q.

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

Li, Z. Z.

Liu, Q.

Luo, D.

Namba, Y.

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann.- Manuf. Tech. 62(1), 315–318 (2013).
[Crossref]

Peng, X. Q.

Schroder, S.

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Sugiyama, H.

J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
[Crossref]

Sun, T.

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
[Crossref]

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

To, S.

Tricard, M.

P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
[Crossref]

Wang, J. M.

Wu, J.

J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
[Crossref]

Wyrowski, F.

Xue, C. X.

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

Yi, A. Y.

L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
[Crossref]

Yin, G.

Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).

Yin, Z.

Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).

Yin, Z. Q.

Zavada, J. M.

Zhang, S.

Zhang, X.

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).

Zhou, X.

Zhu, W.

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

Zhu, Z.

Zong, W. J.

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
[Crossref]

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

Zou, Y.

J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
[Crossref]

Appl. Opt. (4)

CIRP Ann.- Manuf. Tech. (1)

A. Beaucamp and Y. Namba, “Super-smooth finishing of diamond turned hard X-ray molding dies by combined fluid jet and bonnet polishing,” CIRP Ann.- Manuf. Tech. 62(1), 315–318 (2013).
[Crossref]

Int. J. Adv. Manuf. Technol. (1)

J. Wu, Y. Zou, and H. Sugiyama, “Study on finishing characteristics of magnetic abrasive finishing process using low-frequency alternating magnetic field,” Int. J. Adv. Manuf. Technol. 85(1-4), 585–594 (2016).
[Crossref]

Int. J. Mach. Tools Manuf. (4)

W. Zhu, F. Duan, X. Zhang, Z. Zhu, and B. Ju, “A new diamond machining approach for extendable fabrication of micro-freeform lens array,” Int. J. Mach. Tools Manuf. 124, 134–148 (2018).
[Crossref]

W. J. Zong, Z. Q. Li, T. Sun, K. Cheng, D. Li, and S. Dong, “The basic issue in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining,” Int. J. Mach. Tools Manuf. 50(4), 411–419 (2010).
[Crossref]

C. L. He, W. J. Zong, and T. Sun, “Origins for the size effect of surface roughness in diamond turning,” Int. J. Mach. Tools Manuf. 106, 22–42 (2016).
[Crossref]

C. L. He, W. J. Zong, C. X. Xue, and T. Sun, “An accurate 3d surface topography model for single-point diamond turning,” Int. J. Mach. Tools Manuf. 134, 42–68 (2018).
[Crossref]

J. Appl. Opt. (1)

Y. Zhang, Z. Yin, and G. Yin, “Direct optical polishing research on surface of aluminum alloy,” J. Appl. Opt. 35, 675–680 (2014).

J. Manuf. Sci. Eng. (1)

L. Li, S. A. Collins, and A. Y. Yi, “Optical effects of surface finish by ultraprecision single point diamond machining,” J. Manuf. Sci. Eng. 132(2), 021002 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. E. Harvey, S. Schroder, N. Choi, and A. Duparre, “Total integrated scatter from surfaces with arbitrary roughness, correlation widths and incident angles,” Opt. Eng. 51(1), 013402 (2012).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

F. Fang, K. T. Huang, H. Gong, and Z. Li, “Study on the optical reflection characteristic of surface micro-morphology generated by ultra-precision diamond turning,” Opt. Lasers Eng. 62, 46–56 (2014).
[Crossref]

Proc. SPIE (1)

P. Dumas, D. Golini, and M. Tricard, “Improvement of figure and finish of diamond turned surfaces with magneto-rheological finishing (MRF),” Proc. SPIE 5786, 296–305 (2005).
[Crossref]

Other (2)

Wehrli, http://rredc.nrel.gov/solar/spectra/am0/wehrli1985.html (1985).

D. Wu, “Research on several key technologies of ultra-precision diamond turning of large-scale micro-structured roller mold (Dissertation),” Harbin Institute of Technology, China (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 (a) Diffraction effect of a diamond-turned surface under monochromatic light conditions (He-Ne laser: λ = 632.8 nm); (b) diffraction effect under polychromatic light conditions (source: fluorescent lamp).
Fig. 2
Fig. 2 (a)-(c) are the 2D surface topographies of materials A, B and C, respectively; (d)-(e) are the EBSD analysis of the material microstructure of aluminium alloy Al 6061 for materials A, B and C (Vo = void, In = hard inclusion, Gb = grain boundary).
Fig. 3
Fig. 3 The measurement instrument system: (a) the alignment of for the spatial distribution of light; (b) schematic diagram of the measurement system (top view).
Fig. 4
Fig. 4 (a)-(b) are simulation and measurement results at x = 0 mm; (b-1) is measured surface topography near the central area; (c)-(d) are simulation and measurement results at x = 7 mm; (e)-(f) are simulation and measurement results at x = 12 mm.
Fig. 5
Fig. 5 (a) Simulation result of the diffraction efficiency of the specular light on the TM/TE component; (b) comparisons between the simulated and measured results.
Fig. 6
Fig. 6 Measurement and simulation results for the influence of tool edge waviness on different cutting distance l: (a) measurement result (l = 2 km); (b) simulation result at the initial stage (l = 0 km); (c) measurement result (l = 40 km); (d) measurement result (l = 80 km); (e) simulation result (l = 80 km).
Fig. 7
Fig. 7 Measurement results of surface topographies and corresponding simulation and measurement results of light distribution with different materials: (a)-(c) are surface topographies achieved on materials A, B and C; (d)-(f) are simulation results achieved on materials A, B and C; (g)-(i) are measurement results for materials A, B and C.
Fig. 8
Fig. 8 Diffraction efficiency of the specular light with different materials: (a)-(c) are simulated results on materials A, B and C; (d)-(e) are measured results on materials A, B and C.
Fig. 9
Fig. 9 Simulations for the spatial distribution of the visible light with various surface roughness Rt: (a) Rt = 30 nm; (b) Rt = 20 nm; (c) Rt = 18 nm; (d) Rt = 16 nm; (e) Rt = 12nm; (f) Rt = 10 nm.
Fig. 10
Fig. 10 Simulation for the spatial distribution of the visible light based on different surface topographies: (a) simulation result at f = 6 μm/r; (b) simulation result at f = 3 μm/r; (c) simulation result with consideration of random factors; (d) surface topography simulated at f = 6 μm/r; (e) surface topography with consideration of random factors
Fig. 11
Fig. 11 Peak-valley roughness-controlled surfaces achieved in the face-cutting experiments: (a) surface roughness control model v.s. feed rate; (b) 3D topography at f = 6 μm/r; (c) 2D profile at position 1 in (b); (d) 2D profile at position 2 in (b); (e) 3D topography at f = 8 μm/r; (e) 2D profile at position 1 in (e).
Fig. 12
Fig. 12 Verification for the optical performance of the roughness-controlled surfaces with He-Ne laser (wavelength 632.8 nm): (a)-(b) are light distribution for surface finished at f = 6 μm/r; (c)-(d) are light distribution for surface finished at f = 8 μm/r.
Fig. 13
Fig. 13 Pictures of the bright fluorescent lamp imaged by using the diamond-turned surfaces: (a) application of the conventional technology; (b) application of the 3C cutting strategy.
Fig. 14
Fig. 14 Reflection efficiency in prediction and measurement vs. the wavelength of the specular light: (a) reflection efficiency on the surface finished at f = 6 μm/r; (b) reflection efficiency on the surface finished at f = 8 μm/r.

Tables (2)

Tables Icon

Table 1 Process technologies and hp/hv of three workpiece materials as employed in this work

Tables Icon

Table 2 Process parameters in the face cutting experiments

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

{ x t =( r ε +e )sin( π 180 θ ) y t = r ε ( r ε +e )cos( π 180 θ )
F( x )= R tew ( x )+ 4( w r s r ) f 2 x 2 ( f 2 x f 2 )
F( x )=[ 1 2 r ε + 4( w r s r ) f 2 ] x 2 ( f 2 x f 2 )
z d = h v +( h p + h v )U[ 0,1 ]
E in ( x,y,z )=Aexp[ i( k x x+ k y y+ k z z ) ]
E out ( x,y,z )= F 1 { F{ E in ( x,y,z ) }H( k x , k y ) }
ε s-m = 1 n k=1 n | η sk η mk |

Metrics