Abstract

Current optical coherence tomography (OCT) technology, which is used for imaging the eye’s anterior segment, has been established as a clinical gold standard for the diagnosis of corneal diseases. However, the cellular resolution level information that is critical for many clinical applications is still not available. The major technical challenges toward cellular resolution OCT imaging are the limited ranging depth and depth of focus (DOF). In this work, we present a novel ultrahigh resolution OCT system that achieves an isotropic spatial resolution of <2 µm in tissue. The proposed system could approximately double the ranging depth and extend the DOF using the dual-spectrometer design and the forward-model based digital refocusing method, respectively. We demonstrate that the novel system is capable of visualizing the full thickness of the pig cornea over the ranging depth of 3.5 mm and the border of the corneal endothelial cells 8 times Rayleigh range away from the focal plane. This technology has the potential to realize cellular resolution corneal imaging in vivo.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases

Patrice Tankam, Zhiguo He, Ying-Ju Chu, Jungeun Won, Cristina Canavesi, Thierry Lepine, Holly B. Hindman, David J. Topham, Philippe Gain, Gilles Thuret, and Jannick P. Rolland
Opt. Lett. 40(6) 1113-1116 (2015)

Ultrahigh-resolution OCT imaging of the human cornea

René M. Werkmeister, Sabina Sapeta, Doreen Schmidl, Gerhard Garhöfer, Gerald Schmidinger, Valentin Aranha dos Santos, Gerold C. Aschinger, Isabella Baumgartner, Niklas Pircher, Florian Schwarzhans, Anca Pantalon, Harminder Dua, and Leopold Schmetterer
Biomed. Opt. Express 8(2) 1221-1239 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
    [PubMed]
  2. A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye (Lond.) 19(10), 1133–1135 (2005).
    [Crossref] [PubMed]
  3. D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
    [Crossref] [PubMed]
  4. D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
    [Crossref] [PubMed]
  5. W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
    [Crossref] [PubMed]
  6. J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
    [Crossref] [PubMed]
  7. P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
    [Crossref] [PubMed]
  8. R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
    [Crossref] [PubMed]
  9. J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
    [Crossref] [PubMed]
  10. H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
    [Crossref] [PubMed]
  11. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
    [Crossref] [PubMed]
  12. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
    [Crossref] [PubMed]
  13. P. Tankam, Z. He, Y. J. Chu, J. Won, C. Canavesi, T. Lepine, H. B. Hindman, D. J. Topham, P. Gain, G. Thuret, and J. P. Rolland, “Assessing microstructures of the cornea with Gabor-domain optical coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6), 1113–1116 (2015).
    [Crossref] [PubMed]
  14. M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
    [Crossref] [PubMed]
  15. K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
    [Crossref] [PubMed]
  16. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  17. B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
    [Crossref] [PubMed]
  18. M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
    [Crossref] [PubMed]
  19. R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
    [Crossref] [PubMed]
  20. N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
    [Crossref] [PubMed]
  21. A.-H. Karimi, A. Wong, and K. Bizheva, “Automated detection and cell density assessment of keratocytes in the human corneal stroma from ultrahigh resolution optical coherence tomograms,” Biomed. Opt. Express 2(10), 2905–2916 (2011).
    [Crossref] [PubMed]
  22. K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
    [Crossref] [PubMed]
  23. K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
    [Crossref] [PubMed]
  24. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [Crossref] [PubMed]
  25. R. A. Leitgeb, M. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier domain optical coherence microscopy,” Opt. Lett. 31(16), 2450–2452 (2006).
    [Crossref] [PubMed]
  26. K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
    [Crossref] [PubMed]
  27. E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
    [Crossref]
  28. J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
    [Crossref] [PubMed]
  29. T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
    [Crossref] [PubMed]
  30. A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
    [Crossref] [PubMed]
  31. Y. Yasuno, J. Sugisaka, Y. Sando, Y. Nakamura, S. Makita, M. Itoh, and T. Yatagai, “Non-iterative numerical method for laterally superresolving Fourier domain optical coherence tomography,” Opt. Express 14(3), 1006–1020 (2006).
    [Crossref] [PubMed]
  32. A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
    [Crossref] [PubMed]
  33. W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).
  34. L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
    [Crossref] [PubMed]
  35. D. Cui, X. Liu, J. Zhang, X. Yu, S. Ding, Y. Luo, J. Gu, P. Shum, and L. Liu, “Dual spectrometer system with spectral compounding for 1-μm optical coherence tomography in vivo,” Opt. Lett. 39(23), 6727–6730 (2014).
    [Crossref] [PubMed]
  36. X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
    [Crossref] [PubMed]
  37. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004).
    [Crossref] [PubMed]
  38. K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
    [Crossref] [PubMed]
  39. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  40. S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
    [Crossref] [PubMed]
  41. A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
    [PubMed]
  42. M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
    [Crossref] [PubMed]
  43. S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
    [Crossref] [PubMed]
  44. H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
    [Crossref] [PubMed]
  45. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
    [Crossref] [PubMed]
  46. G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7(1), 42353 (2017).
    [Crossref] [PubMed]
  47. Z. Al-Qazwini, Z. Y. G. Ko, K. Mehta, and N. Chen, “Ultrahigh-speed line-scan SD-OCT for four-dimensional in vivo imaging of small animal models,” Biomed. Opt. Express 9(3), 1216–1228 (2018).
    [Crossref] [PubMed]
  48. D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 MHz,” Opt. Lett. 39(18), 5333–5336 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
[Crossref]

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
[Crossref] [PubMed]

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7(1), 42353 (2017).
[Crossref] [PubMed]

2016 (1)

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (4)

2013 (6)

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

J. Mo, M. de Groot, and J. F. de Boer, “Focus-extension by depth-encoded synthetic aperture in Optical Coherence Tomography,” Opt. Express 21(8), 10048–10061 (2013).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

2012 (5)

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
[Crossref] [PubMed]

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

K. Sasaki, K. Kurokawa, S. Makita, and Y. Yasuno, “Extended depth of focus adaptive optics spectral domain optical coherence tomography,” Biomed. Opt. Express 3(10), 2353–2370 (2012).
[Crossref] [PubMed]

2011 (2)

A.-H. Karimi, A. Wong, and K. Bizheva, “Automated detection and cell density assessment of keratocytes in the human corneal stroma from ultrahigh resolution optical coherence tomograms,” Biomed. Opt. Express 2(10), 2905–2916 (2011).
[Crossref] [PubMed]

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

2010 (2)

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

2009 (2)

R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
[Crossref] [PubMed]

J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
[Crossref] [PubMed]

2008 (1)

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

2007 (2)

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (3)

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye (Lond.) 19(10), 1133–1135 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (4)

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

2000 (1)

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

1994 (1)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Alex, A.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Al-Qazwini, Z.

An, L.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Ang, M.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Aung, T.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Bachmann, A. H.

Bald, M.

M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
[Crossref] [PubMed]

Baratz, K. H.

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Bardenstein, D. S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Beck, R. W.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Benetz, B. A.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Bizheva, K.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

A.-H. Karimi, A. Wong, and K. Bizheva, “Automated detection and cell density assessment of keratocytes in the human corneal stroma from ultrahigh resolution optical coherence tomograms,” Biomed. Opt. Express 2(10), 2905–2916 (2011).
[Crossref] [PubMed]

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Bo, E.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
[Crossref] [PubMed]

E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
[Crossref]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Bronhagl, M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Buchser, N.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Canavesi, C.

Cavanagh, H. D.

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

Chang, V.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Chen, N.

Chen, Q.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Chen, S.

Chen, Z.

Cheng, A. C.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Chong, W.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Chu, Y. J.

Cui, D.

Dart, J. K.

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

de Boer, J. F.

de Groot, M.

Dennis, S.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
[Crossref] [PubMed]

Ding, S.

Ding, Z.

Dorairaj, S.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

Drexler, W.

D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 MHz,” Opt. Lett. 39(18), 5333–5336 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Numerical focusing methods for full field OCT: a comparison based on a common signal model,” Opt. Express 22(13), 16061–16078 (2014).
[Crossref] [PubMed]

A. Kumar, W. Drexler, and R. A. Leitgeb, “Subaperture correlation based digital adaptive optics for full field optical coherence tomography,” Opt. Express 21(9), 10850–10866 (2013).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Dubovy, S. R.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Dueker, D. K.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

Duker, J.

El Sayyad, F.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

El-Agha, M. S.

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

Erie, J. C.

J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
[Crossref] [PubMed]

Fechtig, D. J.

Fercher, A.

Feuer, W.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Foster, A.

A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye (Lond.) 19(10), 1133–1135 (2005).
[Crossref] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Gain, P.

Gal, R. L.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Galor, A.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Garhöfer, G.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Ge, X.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Goldsmith, J.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

Grajciar, B.

Groeschl, M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Gu, J.

Guthoff, R. F.

R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
[Crossref] [PubMed]

Haines, L.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Hajialamdari, M.

Hariri, S.

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

He, M. G.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

He, Z.

Hee, M. R.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Hileeto, D.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Hindman, H. B.

Hirano, K.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Hitzenberger, C.

Hodge, D. O.

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

Hofer, B.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Holland, E. J.

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Hu, Z.

Huang, D.

M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
[Crossref] [PubMed]

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Hutchings, N.

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Hyun, C.

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Ide, T.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Ito, Y.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Itoh, M.

Izatt, J. A.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Jacobs, D. S.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Jester, J. V.

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

Jhanji, V.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

Jiao, S.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Joag, M. G.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Johnstone, M.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Kachi, S.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Kalajian, A.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Karimi, A.-H.

Karp, C. L.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kaufman, S. C.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Kaya, S.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Khan, S.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
[Crossref] [PubMed]

Kinoshita, S.

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

Ko, T.

Ko, Z. Y. G.

Kojima, T.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Kollman, C.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Kowalczyk, A.

Kralj, O.

Kumar, A.

Kurokawa, K.

Lam, D. S.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Lan, G.

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7(1), 42353 (2017).
[Crossref] [PubMed]

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Lass, J. H.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Lasser, T.

Lau, S.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Lee, W. B.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Lepine, T.

Leung, C. K.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Li, G.

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7(1), 42353 (2017).
[Crossref] [PubMed]

Li, H.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

Li, J.

Li, P.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Li, Y.

M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
[Crossref] [PubMed]

Lin, C. P.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Liu, A.

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

Liu, L.

Liu, X.

Luo, Y.

MacLelan, B.

MacLellan, B.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Makita, S.

Malchow, D.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Manning, F. J.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Mannis, M. J.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Mason, E.

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

McCoy, K.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

McLaren, J. W.

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
[Crossref] [PubMed]

Meek, K. M.

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
[Crossref] [PubMed]

Mehta, J. S.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Mehta, K.

Miyake, Y.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Mo, J.

Moayed, A. A.

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Montoya, M.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Musch, D. C.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Nakamura, Y.

Nanji, A. A.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Nelson, J. S.

Patel, S. V.

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
[Crossref] [PubMed]

Perez, V. L.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Petroll, W. M.

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

Puliafito, C. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Radhakrishnan, S.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Rao, S. K.

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Reinhart, W. J.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Ren, H.

Repp, D. J.

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

Resnikoff, S.

A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye (Lond.) 19(10), 1133–1135 (2005).
[Crossref] [PubMed]

Riedl, J.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Rolland, J. P.

Rollins, A. M.

Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007).
[Crossref] [PubMed]

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Roth, J. E.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Ruedy, K. J.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Sando, Y.

Sasaki, K.

Saw, S. M.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Schmetterer, L.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Schmidl, D.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Schmoll, T.

D. J. Fechtig, T. Schmoll, B. Grajciar, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source interferometric imaging at up to 1 MHz,” Opt. Lett. 39(18), 5333–5336 (2014).
[Crossref] [PubMed]

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Scott Carney, P.

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Shousha, M. A.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Shtein, R. M.

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

Shum, P.

Simpson, T. L.

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Smith, S. D.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

Sorbara, L.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

Srinivasan, M.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Srinivasan, V.

Stachs, O.

R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
[Crossref] [PubMed]

Steinmann, L.

Stulting, D.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Sugisaka, J.

Suzuki, T.

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

Tan, B.

K. Bizheva, B. Tan, B. MacLelan, O. Kralj, M. Hajialamdari, D. Hileeto, and L. Sorbara, “Sub-micrometer axial resolution OCT for in-vivo imaging of the cellular structure of healthy and keratoconic human corneas,” Biomed. Opt. Express 8(2), 800–812 (2017).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

Tan, D. T.

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

Tankam, P.

Tay, W. T.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Thomas, B. J.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Thuret, G.

Topham, D. J.

Unterhuber, A.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Upadhyay, M. P.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Vietauer, M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Villiger, M.

Wang, J.

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Wang, N.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
[Crossref] [PubMed]

E. Bo, Y. Luo, S. Chen, X. Liu, N. Wang, X. Ge, X. Wang, S. Chen, S. Chen, J. Li, and L. Liu, “Depth-of-focus extension in optical coherence tomography via multiple aperture synthesis,” Optica 4(7), 701–706 (2017).
[Crossref]

Wang, R. K.

L. An, P. Li, G. Lan, D. Malchow, and R. K. Wang, “High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth,” Biomed. Opt. Express 4(2), 245–259 (2013).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

Wang, X.

Werkmeister, R. M.

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

Westphal, V.

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Whitcher, J. P.

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Wojtkowski, M.

Won, J.

Wong, A.

Wong, T. Y.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Xing, D.

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Xiong, Q.

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
[Crossref] [PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

Yoo, S. H.

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

Yu, X.

Yuen, L.

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

Zhang, J.

Zhao, Y.

Zhivov, A.

R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
[Crossref] [PubMed]

Am. J. Ophthalmol. (1)

J. C. Erie, J. W. McLaren, and S. V. Patel, “Confocal microscopy in ophthalmology,” Am. J. Ophthalmol. 148(5), 639–646 (2009).
[Crossref] [PubMed]

Arch. Ophthalmol. (3)

J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994).
[Crossref] [PubMed]

S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
[Crossref] [PubMed]

S. Radhakrishnan, J. Goldsmith, D. Huang, V. Westphal, D. K. Dueker, A. M. Rollins, J. A. Izatt, and S. D. Smith, “Comparison of optical coherence tomography and ultrasound biomicroscopy for detection of narrow anterior chamber angles,” Arch. Ophthalmol. 123(8), 1053–1059 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (5)

Biophys. J. (1)

K. M. Meek, S. Dennis, and S. Khan, “Changes in the refractive index of the stroma and its extrafibrillar matrix when the cornea swells,” Biophys. J. 85(4), 2205–2212 (2003).
[Crossref] [PubMed]

Bull. World Health Organ. (1)

J. P. Whitcher, M. Srinivasan, and M. P. Upadhyay, “Corneal blindness: a global perspective,” Bull. World Health Organ. 79(3), 214–221 (2001).
[PubMed]

Clin. Exp. Ophthalmol. (1)

R. F. Guthoff, A. Zhivov, and O. Stachs, “In vivo confocal microscopy, an inner vision of the cornea - a major review,” Clin. Exp. Ophthalmol. 37(1), 100–117 (2009).
[Crossref] [PubMed]

Cornea (2)

H. D. Cavanagh, M. S. El-Agha, W. M. Petroll, and J. V. Jester, “Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century,” Cornea 19(5), 712–722 (2000).
[Crossref] [PubMed]

K. Hirano, Y. Ito, T. Suzuki, T. Kojima, S. Kachi, and Y. Miyake, “Optical coherence tomography for the noninvasive evaluation of the cornea,” Cornea 20(3), 281–289 (2001).
[Crossref] [PubMed]

Eye (Lond.) (1)

A. Foster and S. Resnikoff, “The impact of Vision 2020 on global blindness,” Eye (Lond.) 19(10), 1133–1135 (2005).
[Crossref] [PubMed]

Invest. Ophthalmol. Vis. Sci. (4)

R. M. Werkmeister, A. Alex, S. Kaya, A. Unterhuber, B. Hofer, J. Riedl, M. Bronhagl, M. Vietauer, D. Schmidl, T. Schmoll, G. Garhöfer, W. Drexler, R. A. Leitgeb, M. Groeschl, and L. Schmetterer, “Measurement of tear film thickness using ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 54(8), 5578–5583 (2013).
[Crossref] [PubMed]

N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 51(9), 4579–4584 (2010).
[Crossref] [PubMed]

K. Bizheva, L. Haines, E. Mason, B. MacLellan, B. Tan, D. Hileeto, and L. Sorbara, “In Vivo Imaging and Morphometry of the Human Pre-Descemet’s Layer and Endothelium With Ultrahigh-Resolution Optical Coherence Tomography,” Invest. Ophthalmol. Vis. Sci. 57(6), 2782–2787 (2016).
[Crossref] [PubMed]

M. Ang, W. Chong, W. T. Tay, L. Yuen, T. Y. Wong, M. G. He, S. M. Saw, T. Aung, and J. S. Mehta, “Anterior segment optical coherence tomography study of the cornea and anterior segment in adult ethnic South Asian Indian eyes,” Invest. Ophthalmol. Vis. Sci. 53(1), 120–125 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 16012 (2013).
[Crossref] [PubMed]

J. Curr. Glaucoma Pract. (1)

H. Li, V. Jhanji, S. Dorairaj, A. Liu, D. S. Lam, and C. K. Leung, “Anterior segment optical coherence tomography and its clinical applications in glaucoma,” J. Curr. Glaucoma Pract. 6(2), 68–74 (2012).
[Crossref] [PubMed]

J. Ophthalmol. (1)

M. Bald, Y. Li, and D. Huang, “Anterior chamber angle evaluation with fourier-domain optical coherence tomography,” J. Ophthalmol. 2012, 1 (2012).
[Crossref] [PubMed]

J. Refract. Surg. (1)

A. C. Cheng, S. K. Rao, S. Lau, C. K. Leung, and D. S. Lam, “Central corneal thickness measurements by ultrasound, Orbscan II, and Visante OCT after LASIK for myopia,” J. Refract. Surg. 24(4), 361–365 (2008).
[PubMed]

Lancet (1)

D. T. Tan, J. K. Dart, E. J. Holland, and S. Kinoshita, “Corneal transplantation,” Lancet 379(9827), 1749–1761 (2012).
[Crossref] [PubMed]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. Scott Carney, and S. A. Boppart, “Interferometric synthetic aperture microscopy,” Nat. Phys. 3(2), 129–134 (2007).
[Crossref] [PubMed]

Ocul. Surf. (1)

B. J. Thomas, A. Galor, A. A. Nanji, F. El Sayyad, J. Wang, S. R. Dubovy, M. G. Joag, and C. L. Karp, “Ultra high-resolution anterior segment optical coherence tomography in the diagnosis and management of ocular surface squamous neoplasia,” Ocul. Surf. 12(1), 46–58 (2014).
[Crossref] [PubMed]

Ophthalmology (4)

M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology 117(6), 1220–1227 (2010).
[Crossref] [PubMed]

D. J. Repp, D. O. Hodge, K. H. Baratz, J. W. McLaren, and S. V. Patel, “Fuchs’ endothelial corneal dystrophy: subjective grading versus objective grading based on the central-to-peripheral thickness ratio,” Ophthalmology 120(4), 687–694 (2013).
[Crossref] [PubMed]

W. J. Reinhart, D. C. Musch, D. S. Jacobs, W. B. Lee, S. C. Kaufman, and R. M. Shtein, “Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty a report by the american academy of ophthalmology,” Ophthalmology 118(1), 209–218 (2011).
[Crossref] [PubMed]

J. H. Lass, R. L. Gal, K. J. Ruedy, B. A. Benetz, R. W. Beck, K. H. Baratz, E. J. Holland, A. Kalajian, C. Kollman, F. J. Manning, M. J. Mannis, K. McCoy, M. Montoya, D. Stulting, D. Xing, and Cornea Donor Study Group, “An evaluation of image quality and accuracy of eye bank measurement of donor cornea endothelial cell density in the Specular Microscopy Ancillary Study,” Ophthalmology 112(3), 431–440 (2005).
[Crossref] [PubMed]

Opt. Express (7)

Opt. Lett. (6)

Optica (1)

Sci. Rep. (2)

S. Chen, X. Liu, N. Wang, X. Wang, Q. Xiong, E. Bo, X. Yu, S. Chen, and L. Liu, “Visualizing Micro-anatomical Structures of the Posterior Cornea with Micro-optical Coherence Tomography,” Sci. Rep. 7(1), 10752 (2017).
[Crossref] [PubMed]

G. Lan and G. Li, “Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography,” Sci. Rep. 7(1), 42353 (2017).
[Crossref] [PubMed]

Other (1)

W. Drexler and J. G. Fujimoto, Optical coherence tomography: technology and applications (Springer Science & Business Media, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the dual-spectrometer high-resolution SD-OCT imaging system. PC: polarizer controller; L1-L4: achromatic lens; RM: reference mirror; AO: analog output; DAQ: data acquisition card; CL: camera link cable; IMAQ: image acquisition board.
Fig. 2
Fig. 2 Coherent spectral combination. (a) The sum of the magnitude of the combined spectra as a function of the pixel number (α) of the first overlapping zero crossing point in fringe1. Inset: the sum of magnitude is monotonically decreased as OPD increases when α = 1091. (b) The best matched and combined interference spectra, z = 177.8 μm. (c) Combined interference spectrum after dispersion calibration of (b); red curves: envelopes of spectrometer output. (d) Measured axial point-spread functions (PSFs) on a linear scale for different delays relative to the reference arm length.
Fig. 3
Fig. 3 (a) Measured axial point-spread function (PSF) of the dual spectrometer system and the typical used single spectrometer system. (b) Axial resolution on a linear scale for different delays relative to the reference arm length.
Fig. 4
Fig. 4 High-resolution SD-OCT images of the pig cornea ex vivo. (a) A representative cross-sectional image of pig cornea in full thickness. Inset: zoomed-in view of the rectangular area, yellow arrows indicate endothelial cells (Ed). (b) Corresponding H&E stained histology. (c) The en face view of the apical side of the endothelial cells presented regularly arranged polygonal cells ex vivo. EPT: epithelium; S: stroma; DM: Descemet’s membrane; Ed: Endothelial layer. Scale bars: 25 µm.
Fig. 5
Fig. 5 Numerical defocus correction at the endothelial layer ex vivo. (a) A representative cross-sectional image of the pig cornea; the distance between endothelial (Ed) layer and the focal point was about 80 µm; yellow arrow indicates the Ed cells layer. (b) Un-corrected en face view of one Ed layer. (d) The zoomed view of the rectangular area of (b). (c) and (e) Forward model (FM) correction results of Ed cells. (f) and (g) Cross-sectional imaging of Ed layer of the original (Org) and after FM correction respectively. Scale bar: 25 µm.
Fig. 6
Fig. 6 Numerical defocus correction at the endothelial layer ex vivo. (a) A representative cross-sectional image of the pig cornea; the distance between endothelial (Ed) layer and the focal point was about 123 µm; yellow arrow indicates the Ed cells layer. (b) Un-corrected en face view of one Ed layer. (d) The zoomed view of the rectangular area of (b). (c) and (e) Forward model (FM) correction results of Ed cells. (f) and (g) Cross-sectional imaging of Ed layer of the original (Org) and after FM correction respectively. Scale bar: 25 µm.
Fig. 7
Fig. 7 High-resolution SD-OCT cross-sectional image of the pig cornea ex vivo over 7.6 × 2.2 mm (n = 1.375). Inset is the zoomed-in view of the rectangular area; Arrows indicate endothelial cells layers. Scale bar: 50 µm.
Fig. 8
Fig. 8 High-resolution SD-OCT cross-sectional image of the anterior chamber angle of the pig eye ex vivo. Ed: endothelial layer. SL: Schwalbe’s line, AR: angle recess. Scale bar: 200 µm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k 2 (z,j)=α× k 1 2 (z,i)+b× k 1 (z,i)+c.
γ(M k x ,z)=exp(+i λ 0 z M 2 4π n 0 × k x 2 ).
z= N z λ 0 2 2 n 0 Δλ .

Metrics