Abstract

The binary defocusing technique has been widely used in high-speed three-dimensional (3D) shape measurement because it breaks the bottlenecks in high-speed fringe projection and the projector’s nonlinear response. However, it is challenging for this method to realize a two- or multi-frequency phase-shifting algorithm because it is difficult to simultaneously generate high-quality sinusoidal fringe patterns with different periods under the same defocusing degree. To bypass this challenge, we proposed a high-speed 3D shape measurement technique for dynamic scenes based on cyclic complementary Gray-code (CCGC) patterns. In this proposed method, the projected phase-shifting sinusoidal fringes kept one same frequency, which is beneficial to ensure the optimum defocusing degree for binary dithering technique. The wrapped phase can be calculated by phase-shifting algorithm and unwrapped with the aid of complementary Gray-code (CGC) patterns in a simple and robust way. Then, the cyclic coding strategy further extends the unambiguous phase measurement range and improves the measurement accuracy compared with the traditional Gray-coding strategy under the condition of the same number of projected patterns. High-quality 3D results of three complex dynamic scenes—including a cooling fan and a standard ceramic ball with a free-falling table tennis, collapsing building blocks, and impact of the Newton’s cradle—were demonstrated at a frame rate of 357 fps. This verified the proposed method’s feasibility and validity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed three-dimensional shape measurement based on shifting Gray-code light

Zhoujie Wu, Wenbo Guo, and Qican Zhang
Opt. Express 27(16) 22631-22644 (2019)

High-speed three-dimensional profilometry for multiple objects with complex shapes

Chao Zuo, Qian Chen, Guohua Gu, Shijie Feng, and Fangxiaoyu Feng
Opt. Express 20(17) 19493-19510 (2012)

Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing

Dongliang Zheng, Qian Kemao, Feipeng Da, and Hock Soon Seah
Appl. Opt. 56(13) 3660-3665 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
    [Crossref]
  2. K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
    [Crossref] [PubMed]
  3. E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
    [Crossref]
  4. X. Su and Q. Zhang, “Dynamic 3D shape measurement: a review,” Opt. Lasers Eng. 48(2), 191–204 (2010).
    [Crossref]
  5. S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
    [Crossref]
  6. V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
    [Crossref]
  7. Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
    [Crossref]
  8. S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
    [Crossref]
  9. C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
    [Crossref]
  10. G. A. Ayubi, J. A. Ayubi, J. M. Di Martino, and J. A. Ferrari, “Pulse-width modulation in defocused three-dimensional fringe projection,” Opt. Lett. 35(21), 3682–3684 (2010).
    [Crossref] [PubMed]
  11. Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35(24), 4121–4123 (2010).
    [Crossref] [PubMed]
  12. W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
    [Crossref]
  13. C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51(19), 4477–4490 (2012).
    [Crossref] [PubMed]
  14. C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
    [Crossref] [PubMed]
  15. L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
    [Crossref]
  16. X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
    [Crossref]
  17. H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).
  18. X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).
  19. Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34(2), 107–113 (2002).
    [Crossref]
  20. Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
    [Crossref] [PubMed]
  21. Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
    [Crossref] [PubMed]
  22. C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
    [Crossref]
  23. Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
    [Crossref] [PubMed]
  24. J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
    [Crossref] [PubMed]
  25. S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
    [Crossref]
  26. J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
    [Crossref] [PubMed]
  27. Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
    [Crossref]
  28. Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51(27), 6631–6636 (2012).
    [Crossref] [PubMed]
  29. K. V. Creath, “Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).
    [Crossref]
  30. W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40(20), 3326–3333 (2001).
    [Crossref] [PubMed]
  31. C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
    [Crossref]

2018 (2)

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

2017 (1)

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

2016 (3)

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
[Crossref] [PubMed]

2014 (1)

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

2013 (2)

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

2012 (6)

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51(19), 4477–4490 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51(27), 6631–6636 (2012).
[Crossref] [PubMed]

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

2011 (1)

2010 (4)

2007 (2)

V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
[Crossref]

K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
[Crossref] [PubMed]

2005 (2)

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

2003 (1)

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

2002 (1)

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34(2), 107–113 (2002).
[Crossref]

2001 (1)

1992 (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

1988 (1)

K. V. Creath, “Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

1982 (1)

H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).

Asundi, A.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Ayubi, G. A.

Ayubi, J. A.

Cao, Y.

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Chen, C.

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

Chen, Q.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51(19), 4477–4490 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Chen, W.

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Creath, K. V.

K. V. Creath, “Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

Di Martino, J. M.

Dietrich, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

Efimov, I. R.

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
[Crossref] [PubMed]

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Feng, F.

Feng, S.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51(19), 4477–4490 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Ferrari, J. A.

Ford, K. R.

K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
[Crossref] [PubMed]

Gu, G.

Guo, L.

X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).

He, D.

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

Heist, S.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Hewett, T. E.

K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
[Crossref] [PubMed]

Huang, L.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Ina, H.

H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).

Kobayashi, S.

H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).

Kühmstedt, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Laughner, J. I.

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
[Crossref] [PubMed]

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Legat, J.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Li, H.

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Li, J.

X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).

Li, R.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Li, W.

Li, Y.

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Liu, Z.

Lohry, W.

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

Lutzke, P.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

Malamas, E.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Mann, A.

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Mcneill, S.

V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
[Crossref]

Myer, G. D.

K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
[Crossref] [PubMed]

Notni, G.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Petit, L.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Petrakis, E.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Schmidt, I.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

Schreiber, P.

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Shao, C. C.

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Shen, G.

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

Su, W.

X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).

Su, X.

J. Zhu, P. Zhou, X. Su, and Z. You, “Accurate and fast 3D surface measurement with temporal-spatial binary encoding structured illumination,” Opt. Express 24(25), 28549–28560 (2016).
[Crossref] [PubMed]

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3D shape measurement: a review,” Opt. Lasers Eng. 48(2), 191–204 (2010).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34(2), 107–113 (2002).
[Crossref]

W. Li, X. Su, and Z. Liu, “Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method,” Appl. Opt. 40(20), 3326–3333 (2001).
[Crossref] [PubMed]

X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).

Su, X.-Y.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Sui, X.

Sun, X.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Sutton, M.

V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
[Crossref]

Takeda, M.

H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).

Tao, T.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

Tiwari, V.

V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
[Crossref]

Tünnermann, A.

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

von Bally, G.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Vukicevic, D.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Wang, Y.

Xiang, L.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

You, Z.

Zervakis, M.

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

Zhang, M.

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Zhang, Q.

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3D shape measurement: a review,” Opt. Lasers Eng. 48(2), 191–204 (2010).
[Crossref]

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

Q. Zhang and X. Su, “High-speed optical measurement for the drumhead vibration,” Opt. Express 13(8), 3110–3116 (2005).
[Crossref] [PubMed]

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34(2), 107–113 (2002).
[Crossref]

Zhang, S.

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

Y. Wang, J. I. Laughner, I. R. Efimov, and S. Zhang, “3D absolute shape measurement of live rabbit hearts with a superfast two-frequency phase-shifting technique,” Opt. Express 21(5), 5822–5832 (2013).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Three-dimensional shape measurement with binary dithered patterns,” Appl. Opt. 51(27), 6631–6636 (2012).
[Crossref] [PubMed]

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Superfast multifrequency phase-shifting technique with optimal pulse width modulation,” Opt. Express 19(6), 5149–5155 (2011).
[Crossref] [PubMed]

Y. Wang and S. Zhang, “Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing,” Opt. Lett. 35(24), 4121–4123 (2010).
[Crossref] [PubMed]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

Zhou, P.

Zhou, W.-S.

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Zhu, J.

Zhu, L.

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

Zuo, C.

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

C. Zuo, Q. Chen, S. Feng, F. Feng, G. Gu, and X. Sui, “Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing,” Appl. Opt. 51(19), 4477–4490 (2012).
[Crossref] [PubMed]

C. Zuo, Q. Chen, G. Gu, S. Feng, and F. Feng, “High-speed three-dimensional profilometry for multiple objects with complex shapes,” Opt. Express 20(17), 19493–19510 (2012).
[Crossref] [PubMed]

Am. J. Physiol. Heart Circ. Physiol. (1)

J. I. Laughner, S. Zhang, H. Li, C. C. Shao, and I. R. Efimov, “Mapping cardiac surface mechanics with structured light imaging,” Am. J. Physiol. Heart Circ. Physiol. 303(6), H712–H720 (2012).
[Crossref] [PubMed]

Appl. Opt. (3)

Exp. Mech. (1)

V. Tiwari, M. Sutton, and S. Mcneill, “Assessment of high speed imaging systems for 2D and 3D deformation measurements: methodology development and validation,” Exp. Mech. 47(4), 561–579 (2007).
[Crossref]

Image Vis. Comput. (1)

E. Malamas, E. Petrakis, M. Zervakis, L. Petit, and J. Legat, “A survey on industrial vision systems, applications and tools,” Image Vis. Comput. 21(2), 171–188 (2003).
[Crossref]

J. Mod. Opt. (1)

L. Zhu, Y. Cao, D. He, and C. Chen, “Real-time tricolor phase measuring profilometry based on CCD sensitivity calibration,” J. Mod. Opt. 64(4), 379–387 (2017).
[Crossref]

Med. Sci. Sports Exerc. (1)

K. R. Ford, G. D. Myer, and T. E. Hewett, “Reliability of landing 3D motion analysis: implications for longitudinal analyses,” Med. Sci. Sports Exerc. 39(11), 2021–2028 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

X.-Y. Su, W.-S. Zhou, G. von Bally, and D. Vukicevic, “Automated phase-measuring profilometry using defocused projection of a Ronchi grating,” Opt. Commun. 94(6), 561–573 (1992).
[Crossref]

Opt. Eng. (2)

Q. Zhang, X. Su, Y. Cao, Y. Li, L. Xiang, and W. Chen, “Optical 3D shape and deformation measurement of rotating blades using stroboscopic structured illumination,” Opt. Eng. 44(11), 113601 (2005).
[Crossref]

S. Heist, A. Mann, P. Kühmstedt, P. Schreiber, and G. Notni, “Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement,” Opt. Eng. 53(11), 112208 (2014).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

Q. Zhang and X. Su, “An optical measurement of vortex shape at a free surface,” Opt. Laser Technol. 34(2), 107–113 (2002).
[Crossref]

Opt. Lasers Eng. (9)

W. Lohry and S. Zhang, “3D shape measurement with 2D area modulated binary patterns,” Opt. Lasers Eng. 50(7), 917–921 (2012).
[Crossref]

C. Zuo, Q. Chen, G. Gu, S. Feng, F. Feng, R. Li, and G. Shen, “High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection,” Opt. Lasers Eng. 51(8), 953–960 (2013).
[Crossref]

S. Heist, P. Lutzke, I. Schmidt, P. Dietrich, P. Kühmstedt, A. Tünnermann, and G. Notni, “High-speed three-dimensional shape measurement using GOBO projection,” Opt. Lasers Eng. 87, 90–96 (2016).
[Crossref]

C. Zuo, T. Tao, S. Feng, L. Huang, A. Asundi, and Q. Chen, “Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second,” Opt. Lasers Eng. 102, 70–91 (2018).
[Crossref]

S. Zhang, “High-speed 3D shape measurement with structured light methods: A review,” Opt. Lasers Eng. 106, 119–131 (2018).
[Crossref]

X. Su and Q. Zhang, “Dynamic 3D shape measurement: a review,” Opt. Lasers Eng. 48(2), 191–204 (2010).
[Crossref]

S. Zhang, “Recent progresses on real-time 3D shape measurement using digital fringe projection techniques,” Opt. Lasers Eng. 48(2), 149–158 (2010).
[Crossref]

C. Zuo, L. Huang, M. Zhang, Q. Chen, and A. Asundi, “Temporal phase unwrapping algorithms for fringe projection profilometry: A comparative review,” Opt. Lasers Eng. 85, 84–103 (2016).
[Crossref]

Q. Zhang, X. Su, L. Xiang, and X. Sun, “3D shape measurement based on complementary Gray-code light,” Opt. Lasers Eng. 50(4), 574–579 (2012).
[Crossref]

Opt. Lett. (2)

Prog. Opt. (1)

K. V. Creath, “Phase-Measurement Interferometry Techniques,” Prog. Opt. 26, 349–393 (1988).
[Crossref]

Rev. Sci. Instrum. (1)

H. Ina, M. Takeda, and S. Kobayashi, “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry,” Rev. Sci. Instrum. 72(12), 156–160 (1982).

Other (1)

X. Su, J. Li, L. Guo, and W. Su, “An Improved Fourier Transform Profilometry,” In Proc. SPIE 0954, (1989).

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2
» Visualization 3       Visualization 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Figure 1
Figure 1 Sketch map of complementary Gray-code method. (a)-(c) Phase-shifting dithered patterns. (d) The wrapped phase. (e)-(g) Traditional Gray-code patterns. (h) The additional Gray-code pattern.
Fig. 2
Fig. 2 Sketch map of cyclic coding strategy of complementary Gray-code light. (a)-(c) Phase-shifting dithered patterns in pattern sequence n-1. (d)-(g) Cyclic complementary Gray-code patterns (CCP) in pattern sequence n-1. (h)-(n) Corresponding patterns in pattern sequence n. (o) CCP1 in pattern sequence n-1. (p) Uncorrected CCP1 in pattern sequence n. (q) Phase order k3. (r) Corrected CCP1 in pattern sequence n.
Fig. 3
Fig. 3 The obtainment of phase orders k1, k2 and k3.
Fig. 4
Fig. 4 Error caused by binarization and motion. (a) CCP1 in sequence n-1. (b) Uncorrected CCP1 in sequence n. (c) Phase order k3 with errors in sequence n. (d) Corrected CCP1 with errors in sequence n. (e) CCP4 in sequence n. (f) Phase order k2 with errors in sequence n. (g) Phase order k1 with errors in sequence n.
Fig. 5
Fig. 5 Correction of the phase-jump errors in phase-to-height mapping process. (a) Phase-to-height mapping space. (b) The middle cross-section of (a).
Fig. 6
Fig. 6 Photograph of the high-speed 3D shape measurement system.
Fig. 7
Fig. 7 Continuously captured fringe images for three methods (Visualization 1). (a) A sequence of 8 continuous fringe images for the GC and CGC methods. (b) Seven continuous fringe images for the CCGC method in sequence n-1. (c) Seven continuous fringe images for the CCGC method in sequence n.
Fig. 8
Fig. 8 Data processing and accuracy analyzing of the CCGC method. (a) Test scene consisting of a cooling fan for CPU, a standard ceramic ball and a free-falling table tennis at T = 100ms. (b) Uncorrected absolute phase. (c)-(d) One cross-section (highlighted in (b)) of the uncorrected absolute phase. (e) Corrected absolute phase. (f) Reconstructed result. (g) Sphere fitting of the table tennis in (f). (h) Sphere fitting of the standard ceramic ball in (f). (i) Error distribution of the measured table tennis. (j) Error distribution of the measured standard ceramic ball.
Fig. 9
Fig. 9 Comparative assessment of GC, CGC and CCGC methods.
Fig. 10
Fig. 10 Measurement of collapsing building blocks. (a) Representative collapsing scenes at different time points. (b) Corresponding 3D reconstructions (Visualization 2).
Fig. 11
Fig. 11 Measurement of the impact process of the Newton’s cradle. (a) Representative scenes at different time points. (b) Corresponding 3D reconstructions (Visualization 3). (c) The 3D point cloud of the scene at the first moment, with the color line showing the trajectory and velocity of the left and right ball. (d) The velocity profile of the left and right balls. (e) Different postures of the balls at the corresponding moments in (d).
Fig. 12
Fig. 12 Evaluation of the maximum measuring velocity in the perpendicular direction of the fringe direction. (a) Unwrapping phase of the fourth reference. (b) The derivative of distance in X-axis to phase in the middle row of (a).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I 1 (x,y,n)=α(x,y,n){ a p + b p cos[ϕ(x,y,n)2π/3]+ β 1 (x,y,n) }+ β 2 (x,y,n)
I 2 (x,y,n)=α(x,y,n){ a p + b p cos[ϕ(x,y,n)]+ β 1 (x,y,n) }+ β 2 (x,y,n)
I 3 (x,y,n)=α(x,y,n){ a p + b p cos[ϕ(x,y,n)+2π/3]+ β 1 (x,y,n) }+ β 2 (x,y,n)
ϕ(x,y,n)= tan 1 3 ( I 1 (x,y,n) I 3 (x,y,n)) 2 I 2 (x,y,n) I 1 (x,y,n) I 3 (x,y,n)
k 3 (x,y,n)=CC P 1 (x,y,n)CC P 1 (x,y,n1)
CC P 1 (x,y,n)=(mod(n+1,2)* k 3 (x,y,n))CC P 1 (x,y,n)
V 1 (x,y,n)= i=1 3 CC P i (x,y,n)* 2 (3i)
V 2 (x,y,n)= i=1 4 CC P i (x,y,n)* 2 (4i)
k 2 (x,y,n)=INT((i( V 2 (x,y,n))+1)/2)
Φ(x,y,n)={ ϕ(x,y,n)+2π( k 2 (x,y,n)+8 k 3 (x,y,n)), ϕ(x,y,n)-π/2 ϕ(x,y,n)+2π( k 1 (x,y,n)+8 k 3 (x,y,n)),-π/2<ϕ(x,y,n)<π/2 ϕ(x,y,n)+2π( k 2 (x,y,n)+8 k 3 (x,y,n))-2π, ϕ(x,y,n)π/2 .
1 h(x,y,n) =u(x,y)+ v(x,y) ΔΦ(x,y,n) + w(x,y) Δ Φ 2 (x,y,n) ,
ΔΦ(x,y,n)={ ΔΦ(x,y,n)16π,ΔΦ(x,y,n)> Φ 1 ΔΦ(x,y,n)+16π,ΔΦ(x,y,n)< Φ 2
V Zmax = h min r/m.
V Xmax = d min r/m.

Metrics