Abstract

Based on the period-one (P1) dynamics of an optically injected semiconductor laser (SL), a photonic scheme enabling the generation of a tunable high-quality frequency-modulated continuous-wave (FMCW) signal is investigated experimentally. Under a modulated optical injection, the laser is driven into P1 oscillation with a modulated microwave frequency. In this work, optical feedback is also introduced to further reduce the microwave phase noise. The experimental results show that the central frequency of the generated FMCW signal can be widely tuned from 11.41 to 50.05 GHz by simply adjusting injection parameters while the frequency sweep range of the FMCW signal can be controlled by varying the modulation index. Under proper operating parameters, the sweep range and rate of the FMCW signal are 18.42 GHz (13.73 GHz- 32.15 GHz) and 1.14 GHz/ns, respectively. Further, by introducing an optical feedback loop, the frequency comb contrast of the FMCW signal is drastically increased by 27.15 dB when the reciprocal of the feedback delay time matches with the modulation frequency exactly due to the locking effect of the external cavity optical modes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser

Jun-Ping Zhuang, Xiao-Zhou Li, Song-Sui Li, and Sze-Chun Chan
Opt. Lett. 41(24) 5764-5767 (2016)

Narrow-linewidth microwave generation using AlGaInAs/InP microdisk lasers subject to optical injection and optoelectronic feedback

Xiu-Wen Ma, Yong-Zhen Huang, Ling-Xiu Zou, Bo-Wen Liu, Heng Long, Hai-Zhong Weng, Yue-De Yang, and Jin-Long Xiao
Opt. Express 23(16) 20321-20331 (2015)

Ultra broadband microwave frequency combs generated by an optical pulse-injected semiconductor laser

Yu-Shan Juan and Fan-Yi Lin
Opt. Express 17(21) 18596-18605 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Kanno and T. Kawanishi, “Broadband frequency-modulated continuous-wave signal generation by optical modulation technique,” J. Lightwave Technol. 32(20), 3566–3572 (2014).
    [Crossref]
  2. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
    [Crossref] [PubMed]
  3. M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).
  4. H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
    [Crossref]
  5. M. Z. Straayer, A. V. Messier, and W. G. Lyons, “Ultra-Linear Super wideband Chirp Generator using Digital Compensation,” IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium403–406 (2006).
  6. H. Chi and J. P. Yao, “Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating,” J. Lightwave Technol. 26(10), 1282–1287 (2008).
    [Crossref]
  7. F. Z. Zhang, X. Z. Ge, and S. L. Pan, “Background-free pulsed microwave signal generation based on spectral shaping and frequency-to-time mapping,” Photon. Res. 2(4), B5–B10 (2014).
    [Crossref]
  8. L. R. Chen, “Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics,” Opt. Commun. 373, 70–81 (2016).
    [Crossref]
  9. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
    [Crossref]
  10. H. Gao, C. Lei, M. Chen, F. Xing, H. Chen, and S. Xie, “A simple photonic generation of linearly chirped microwave pulse with large time-bandwidth product and high compression ratio,” Opt. Express 21(20), 23107–23115 (2013).
    [Crossref] [PubMed]
  11. H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
    [Crossref] [PubMed]
  12. J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
    [Crossref]
  13. J. M. Wun, C. C. Wei, J. Chen, C. S. Goh, S. Y. Set, and J. W. Shi, “Photonic chirped radio-frequency generator with ultra-fast sweeping rate and ultra-wide sweeping range,” Opt. Express 21(9), 11475–11481 (2013).
    [Crossref] [PubMed]
  14. Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
    [Crossref]
  15. Y. Zhang and S. Pan, “Generation of phase-coded microwave signals using a polarization-modulator-based photonic microwave phase shifter,” Opt. Lett. 38(5), 766–768 (2013).
    [Crossref] [PubMed]
  16. L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
    [Crossref]
  17. P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
    [Crossref]
  18. F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
    [Crossref]
  19. W. Z. Li, F. Q. Kong, and J. P. Yao, “Arbitrary microwave waveform generation based on a tunable optoelectronic oscillator,” J. Lightwave Technol. 31(23), 3780–3786 (2013).
    [Crossref]
  20. W. Z. Li and J. P. Yao, “Generation of linearly chirped microwave waveform with an increased time-bandwidth product based on a tunable optoelectronic oscillator and a recirculating phase modulation loop,” J. Lightwave Technol. 32(20), 3573–3579 (2014).
    [Crossref]
  21. M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
    [Crossref]
  22. W. F. Zhang and J. P. Yao, “Silicon-based on-chip electrically-tunable spectral shaper for continuously tunable linearly chirped microwave waveform generation,” J. Lightwave Technol. 34(20), 4664–4672 (2016).
    [Crossref]
  23. L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
    [Crossref]
  24. J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Numerical investigation on frequency-modulated continuous-wave dynamics in a semiconductor laser,” in Proceedings Asia Communications and Photonics Conference (ACP), (SOA, 2015), ASu5I.2.
    [Crossref]
  25. P. Zhou, F. Zhang, Q. Guo, and S. Pan, “Linearly chirped microwave waveform generation with large time-bandwidth product by optically injected semiconductor laser,” Opt. Express 24(16), 18460–18467 (2016).
    [Crossref] [PubMed]
  26. N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
    [Crossref]
  27. J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Frequency-modulated microwave generation with feedback stabilization using an optically injected semiconductor laser,” Opt. Lett. 41(24), 5764–5767 (2016).
    [Crossref] [PubMed]
  28. S. C. Chan, S. K. Hwang, and J. M. Liu, “Period-one oscillation for photonic microwave transmission using an optically injected semiconductor laser,” Opt. Express 15(22), 14921–14935 (2007).
    [Crossref] [PubMed]
  29. X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).
  30. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]

2017 (2)

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
[Crossref]

2016 (5)

2015 (1)

2014 (3)

2013 (5)

2012 (3)

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

2011 (1)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

2010 (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

2005 (2)

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Berizzi, F.

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Bogoni, A.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Bowers, J. E.

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Chan, S. C.

Chen, G. C.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Chen, H.

Chen, J.

Chen, J. G.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Chen, L. R.

L. R. Chen, “Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics,” Opt. Commun. 373, 70–81 (2016).
[Crossref]

Chen, M.

Chi, H.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

H. Chi and J. P. Yao, “Chirped RF pulse generation based on optical spectral shaping and wavelength-to-time mapping using a nonlinearly chirped fiber Bragg grating,” J. Lightwave Technol. 26(10), 1282–1287 (2008).
[Crossref]

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Deng, T.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Fujimoto, J. G.

Gao, H.

Ge, X. Z.

Ghelfi, P.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Goh, C. S.

Guo, L.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Guo, Q.

Haefner, J. W.

N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
[Crossref]

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Huang,

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Huber, R.

Hwang, S. K.

Kang, B.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Kanno, A.

Kawanishi, T.

Khan, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Kong, F. Q.

Kuo, F.-M.

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Kwon, H.

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

Laghezza, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Leaird, D. E.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Lei, C.

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Li, S. S.

Li, W.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Li, W. Z.

Li, X. Z.

Li, Z.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Lin, X. D.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Liu, J. G.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Liu, J. M.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Lu, D.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Lyons, W. G.

M. Z. Straayer, A. V. Messier, and W. G. Lyons, “Ultra-Linear Super wideband Chirp Generator using Digital Compensation,” IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium403–406 (2006).

Messier, A. V.

M. Z. Straayer, A. V. Messier, and W. G. Lyons, “Ultra-Linear Super wideband Chirp Generator using Digital Compensation,” IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium403–406 (2006).

Nan-Wei Chen, S. Y.

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Pan, B. W.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Pan, S.

Pan, S. L.

Qi, M. H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Scotti, F.

P. Ghelfi, F. Scotti, F. Laghezza, and A. Bogoni, “Photonic generation of phase-modulated RF signals for pulse compression techniques in coherent radars,” J. Lightwave Technol. 30(11), 1638–1644 (2012).
[Crossref]

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Set, C.-B.

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Set, S. Y.

Shen, H.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Shi, J. W.

Shi, J.-W.

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Straayer, M. Z.

M. Z. Straayer, A. V. Messier, and W. G. Lyons, “Ultra-Linear Super wideband Chirp Generator using Digital Compensation,” IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium403–406 (2006).

Suelzer, J. S.

N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
[Crossref]

Usechak, N. G.

N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
[Crossref]

Wang, H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Wang, L. X.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Wang, W.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Wei, C. C.

Weiner, A. M.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Wojtkowski, M.

Wu, J. G.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Wu, Z. M.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Wun, J. M.

Xia, G. Q.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Xiao, S. J.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Xie, S.

Xie, Y. Y.

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Xing, F.

Xuan, Y.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Yao, J. P.

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Zhang, F.

Zhang, F. Z.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

Zhang, R. K.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, W. F.

Zhang, X. M.

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

Zhang, Y.

Zhao, L.

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Zhao, L. J.

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

Zheng, J. Y.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Zhou, P.

Zhu, N. H.

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

Zhuang, J. P.

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

H. Zhang, W. Zou, and J. Chen, “Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion,” Opt. Lett. 40(6), 1085–1088 (2015).
[Crossref] [PubMed]

IEEE Microw. Wirel. Compon. Lett. (1)

H. Kwon and B. Kang, “Linear frequency modulation of voltage-controlled oscillator using delay-line feedback,” IEEE Microw. Wirel. Compon. Lett. 15(6), 431–433 (2005).
[Crossref]

IEEE Photonics J. (1)

J.-W. Shi, F.-M. Kuo, S. Y. Nan-Wei Chen, C.-B. Set, Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photonics J. 4(1), 215–223 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (5)

Z. Li, W. Z. Li, H. Chi, X. M. Zhang, and J. P. Yao, “Photonic generation of phase-coded microwave signal with large frequency tunability,” IEEE Photonics Technol. Lett. 23(11), 712–714 (2011).
[Crossref]

L. X. Wang, W. Li, H. Wang, J. Y. Zheng, J. G. Liu, and N. H. Zhu, “Photonic generation of phase coded microwave pulses using cascaded polarization modulators,” IEEE Photonics Technol. Lett. 25(7), 678–681 (2013).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

L. Guo, R. K. Zhang, D. Lu, B. W. Pan, G. C. Chen, L. J. Zhao, and W. Wang, “Linearly Chirped Microwave Generation Using a Monolithic Integrated Amplified Feedback Laser,” IEEE Photonics Technol. Lett. 29(21), 1915–1918 (2017).
[Crossref]

N. G. Usechak, J. S. Suelzer, and J. W. Haefner, “High-speed wideband voltage-controlled oscillator via an injection-locked laser,” IEEE Photonics Technol. Lett. 29(13), 1132–1135 (2017).
[Crossref]

J. Lightwave Technol. (6)

Nat. Photonics (1)

M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. J. Xiao, D. E. Leaird, A. M. Weiner, and M. H. Qi, “Ultrabroad-bandwidth-arbitrary-radiofrequency-waveform generation with a silicon photonic chip-based spectral shaper,” Nat. Photonics 4(2), 117–122 (2010).
[Crossref]

Opt. Commun. (1)

L. R. Chen, “Photonic generation of chirped microwave and millimeter wave pulses based on optical spectral shaping and wavelength-to-time mapping in silicon photonics,” Opt. Commun. 373, 70–81 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (3)

Photon. Res. (1)

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Wuli Xuebao (1)

X. D. Lin, T. Deng, Y. Y. Xie, J. G. Wu, J. G. Chen, Z. M. Wu, and G. Q. Xia, “Generation of photonic microwave based on the period-one oscillation of an optically injected semiconductor lasers and all-optical linewidth narrowing,” Wuli Xuebao 61(19), 194212 (2012).

Other (4)

J. P. Zhuang, X. Z. Li, S. S. Li, and S. C. Chan, “Numerical investigation on frequency-modulated continuous-wave dynamics in a semiconductor laser,” in Proceedings Asia Communications and Photonics Conference (ACP), (SOA, 2015), ASu5I.2.
[Crossref]

M. I. Skolnik, Radar Handbook (McGraw-Hill, 2008).

M. Z. Straayer, A. V. Messier, and W. G. Lyons, “Ultra-Linear Super wideband Chirp Generator using Digital Compensation,” IEEE MTT-S International Microwave Symposium digest. IEEE MTT-S International Microwave Symposium403–406 (2006).

F. Laghezza, P. Ghelfi, F. Berizzi, F. Scotti, and A. Bogoni., “Photonic generation of microwave phase coded radar signal,” in Proceedings of IET International Conference on Radar Systems (IEEE, 2012), pp. 1–4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the experimental setup. TL: tunable laser; DFB-SL: distributed feedback semiconductor laser; PC: polarization controller; MZM: Mach-Zehnder modulator; SG: signal generator; EDFA: erbium-doped fiber amplifier; VA: variable attenuator; OC: optical circulator; FC: fiber coupler; PM: power meter; PD: photodiode; ESA: electrical spectrum analyzer; OSA: optical spectrum analyzer; OSC: oscilloscope.
Fig. 2
Fig. 2 (a) Optical spectrum output from the DFB-SL subject to CW optical injection; (b) measured output P1 frequency f0 as a function of the injection power Pinj at different detuning frequency fi.
Fig. 3
Fig. 3 (a) Measured time series of the generated FMCW signal; (b) zoom-in waveform of (a) (insets: zoom-in views in a time window of 1 ns); (c) variation of the instantaneous frequency with time obtained by short-time Fourier transform analysis; (d) recorded power spectrum of the generated FMCW signal.
Fig. 4
Fig. 4 Mapping of the sweep range ∆f under the parameter space of Pinj and m.
Fig. 5
Fig. 5 Power spectra of the generated FMCW based on the P1 oscillation in a DFB-SL subject to modulated optical injection without optical feedback (a) and with optical feedback (b). The injection, modulation and feedback parameters are set at (Pinj, fi) = (1.2 mW, 10.0 GHz), (m, fm) = (0.047, 19.66 MHz), and (Pf, τ) = (6 μW, 51 ns), respectively. RBW: 3MHz
Fig. 6
Fig. 6 Frequency comb contrast R as a function of fm at different fi
Fig. 7
Fig. 7 Frequency comb contrast R as a function of Pf at different fi

Metrics