Abstract

Fully autonomous driving, even under bad weather conditions, can be enabled by the use of multiple sensor systems including 5D radar imaging. In order to get three dimensional, high resolution images with Doppler and time tracking of the target, the radar needs to utilize a large number of transmit/receive modules. For proper beam forming, all of them demand synchronization. Here a new concept for the optical distribution of radar signals, comprising low complexity integrated transmitter and receiver chips and a complex central station, will be introduced. Unavoidable temperature drifts due to environmental influences were compensated to maintain a continuous electrical output power. Within a proof-of-concept radar experiment an angular resolution of 1.1° has been achieved.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed MIMO chaotic radar based on wavelength-division multiplexing technology

Tingfeng Yao, Dan Zhu, De Ben, and Shilong Pan
Opt. Lett. 40(8) 1631-1634 (2015)

Binary phase oscillation of two mutually coupled semiconductor lasers

Shoko Utsunomiya, Naoto Namekata, Kenta Takata, Daisuke Akamatsu, Shuichiro Inoue, and Yoshihisa Yamamoto
Opt. Express 23(5) 6029-6040 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
    [Crossref]
  2. R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions,” Adv. Radio Sci. 3, 205–209 (2005).
    [Crossref]
  3. R. H. Rasshofer, “Functional requirements of future automotive radar systems,” in Proceedings of European Radar Conference, (IEEE, 2007), pp. 259–262.
  4. I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.
  5. T. Berceli and P. Herczfeld, “Microwave photonics – a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
    [Crossref]
  6. J. Yao, “A Tutorial on microwave photonics,” IEEE Photonic Soc. Newslett. 26(3), 5–12 (2012).
  7. A. S. Daryoush, “Optical synchronization of millimeter-wave oscillators for distributed architecture,” IEEE Trans. Microw. Theory Tech. 38(5), 467–476 (1990).
    [Crossref]
  8. A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
    [Crossref]
  9. M. F. Alam, M. Atiquzzaman, B. B. Duncan, H. Nguyen, and R. Kunath, “On board fiber-optic network architectures for radar and avionics signal distribution” NASA/TM-2000–209776.
  10. A. J. Seed, “Microwave photonics,” J. Lightwave Technol. 21(12), 3104–3115 (2003).
  11. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  12. S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).
  13. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
    [Crossref]
  14. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  15. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
    [Crossref]
  16. S. Iezekiel, “Integrated microwave photonics: a key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803 (2017).
    [Crossref]
  17. M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightwave Technol. 32(20), 3509–3520 (2014).
    [Crossref]
  18. H. Zhao, G. Li, N. Wang, S. Zheng, L. Yu, and Y. Chen, “Study of EMC Problems with Vehicles,” in Proceedings of Communications in Computer and Information Science, (Springer, 2013), pp. 159–168.
  19. S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
    [Crossref]
  20. O. Strobel, Communication in Transportation systems (Information Science Reference, 2013).
  21. S. Preußler, N. Wenzel, R.-P. Braun, N. Owschimikow, C. Vogel, A. Deninger, A. Zadok, U. Woggon, and T. Schneider, “Generation of ultra-narrow, stable and tunable millimeter- and terahertz- waves with very low phase noise,” Opt. Express 21(20), 23950–23962 (2013).
    [Crossref] [PubMed]
  22. M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
    [Crossref]
  23. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
    [Crossref]
  24. H. M. D. Kabir and S. M. Salahuddin, “A frequency multiplier using three ambipolar graphene transistors,” Microelectronics J. 70, 12–15 (2017).
    [Crossref]
  25. D. T. Bui, L. D. Nguyên, and B. Journet, “Improving the behavior of an electro-optic modulator by controlling its temperature,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 125–128.
    [Crossref]
  26. R. J. Mailloux, Phased array antenna handbook (Artech House, 2005).

2017 (2)

S. Iezekiel, “Integrated microwave photonics: a key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803 (2017).
[Crossref]

H. M. D. Kabir and S. M. Salahuddin, “A frequency multiplier using three ambipolar graphene transistors,” Microelectronics J. 70, 12–15 (2017).
[Crossref]

2015 (2)

S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

2014 (2)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, M. R. Khan, A. Leinse, W. Beeker, M. Hoekman, R. G. Heideman, and C. G. H. Roeloffzen, “Multiwavelength-integrated optical beamformer based on wavelength division multiplexing for 2-D phased array antennas,” J. Lightwave Technol. 32(20), 3509–3520 (2014).
[Crossref]

2013 (2)

2012 (1)

J. Yao, “A Tutorial on microwave photonics,” IEEE Photonic Soc. Newslett. 26(3), 5–12 (2012).

2010 (1)

T. Berceli and P. Herczfeld, “Microwave photonics – a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

2007 (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

2006 (2)

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

2005 (1)

R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions,” Adv. Radio Sci. 3, 205–209 (2005).
[Crossref]

2003 (1)

1990 (1)

A. S. Daryoush, “Optical synchronization of millimeter-wave oscillators for distributed architecture,” IEEE Trans. Microw. Theory Tech. 38(5), 467–476 (1990).
[Crossref]

Ammann, M. J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

Askeland, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Becker, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Beeker, W.

Berceli, T.

T. Berceli and P. Herczfeld, “Microwave photonics – a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Bialer, O.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Bilik, I.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Braun, R.-P.

Bui, D. T.

D. T. Bui, L. D. Nguyên, and B. Journet, “Improving the behavior of an electro-optic modulator by controlling its temperature,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 125–128.
[Crossref]

Burla, M.

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Daryoush, A. S.

A. S. Daryoush, “Optical synchronization of millimeter-wave oscillators for distributed architecture,” IEEE Trans. Microw. Theory Tech. 38(5), 467–476 (1990).
[Crossref]

Deninger, A.

Dolson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Geary, K.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Gresser, K.

R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions,” Adv. Radio Sci. 3, 205–209 (2005).
[Crossref]

Guttowski, S.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

Hannover, D.

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Heideman, R. G.

Held, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Herczfeld, P.

T. Berceli and P. Herczfeld, “Microwave photonics – a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

Hoekman, M.

Hoene, E.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

Iezekiel, S.

S. Iezekiel, “Integrated microwave photonics: a key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803 (2017).
[Crossref]

John, W.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

Journet, B.

D. T. Bui, L. D. Nguyên, and B. Journet, “Improving the behavior of an electro-optic modulator by controlling its temperature,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 125–128.
[Crossref]

Junker, M.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin Scattering in Optical Fibers for the Generation of Millimeter Waves,” J. Lightwave Technol. 24(1), 295–304 (2006).
[Crossref]

Kabir, H. M. D.

H. M. D. Kabir and S. M. Salahuddin, “A frequency multiplier using three ambipolar graphene transistors,” Microelectronics J. 70, 12–15 (2017).
[Crossref]

Kammel, S.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Kanno, A.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Kawanishi, T.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Khan, M. R.

Klinger, J.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

Kolter, J. Z.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Kona, K.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Kuri, T.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Langer, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Lauterbach, K.-U.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Leinse, A.

Levinson, J.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Marpaung, D.

Musni, M.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Nguyên, L. D.

D. T. Bui, L. D. Nguyên, and B. Journet, “Improving the behavior of an electro-optic modulator by controlling its temperature,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 125–128.
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Owschimikow, N.

Pan, M.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Pan, S.

S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).

Persechini, D.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Pink, O.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pratt, V.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Preußler, S.

Rasshofer, R. H.

R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions,” Adv. Radio Sci. 3, 205–209 (2005).
[Crossref]

R. H. Rasshofer, “Functional requirements of future automotive radar systems,” in Proceedings of European Radar Conference, (IEEE, 2007), pp. 259–262.

Reichl, H.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Roeloffzen, C. G. H.

Salahuddin, S. M.

H. M. D. Kabir and S. M. Salahuddin, “A frequency multiplier using three ambipolar graphene transistors,” Microelectronics J. 70, 12–15 (2017).
[Crossref]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Schneider, T.

Schwarzbacher, A. T.

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Seed, A. J.

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Sharifi, H.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Sokolsky, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Stanek, G.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Stavens, D.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Teichman, A.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Thrun, S.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Umezawa, T.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Villeval, S.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

Vogel, C.

Weber, S.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

Wenzel, N.

Werling, M.

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

Wijayanto, Y. N.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Woggon, U.

Yamamoto, N.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

Yao, J.

J. Yao, “A Tutorial on microwave photonics,” IEEE Photonic Soc. Newslett. 26(3), 5–12 (2012).

Zadok, A.

Zhang, F.

S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).

Zhuang, L.

Zue, D.

S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).

Adv. Radio Sci. (1)

R. H. Rasshofer and K. Gresser, “Automotive Radar and Lidar Systems for Next Generation Driver Assistance Functions,” Adv. Radio Sci. 3, 205–209 (2005).
[Crossref]

IEEE Microw. Mag. (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, S. Pinna, D. Onori, E. Lazzeri, and A. Bogoni, “Photonics in radar systems: RF integration for state-of-the-art functionality,” IEEE Microw. Mag. 16(8), 74–83 (2015).
[Crossref]

IEEE Photonic Soc. Newslett. (1)

J. Yao, “A Tutorial on microwave photonics,” IEEE Photonic Soc. Newslett. 26(3), 5–12 (2012).

IEEE Trans. Microw. Theory Tech. (3)

A. S. Daryoush, “Optical synchronization of millimeter-wave oscillators for distributed architecture,” IEEE Trans. Microw. Theory Tech. 38(5), 467–476 (1990).
[Crossref]

T. Berceli and P. Herczfeld, “Microwave photonics – a historical perspective,” IEEE Trans. Microw. Theory Tech. 58(11), 2992–3000 (2010).
[Crossref]

M. Junker, M. J. Ammann, A. T. Schwarzbacher, J. Klinger, K.-U. Lauterbach, and T. Schneider, “A comparative test of Brillouin amplification and erbium-doped fiber amplification for the generation of millimeter waves with low phase noise properties,” IEEE Trans. Microw. Theory Tech. 54(4), 1576–1581 (2006).
[Crossref]

J. Lightwave Technol. (3)

Laser Photonics Rev. (1)

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photonics Rev. 7(4), 506–538 (2013).
[Crossref]

Microelectronics J. (1)

H. M. D. Kabir and S. M. Salahuddin, “A frequency multiplier using three ambipolar graphene transistors,” Microelectronics J. 70, 12–15 (2017).
[Crossref]

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Proc. SPIE (1)

S. Iezekiel, “Integrated microwave photonics: a key enabling technology for radio-over-fiber,” Proc. SPIE 10128, 1012803 (2017).
[Crossref]

Trans. Nanjing Univ. Aeron. Astron. (1)

S. Pan, D. Zue, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeron. Astron. 31(3), 219–240 (2015).

Other (10)

H. Zhao, G. Li, N. Wang, S. Zheng, L. Yu, and Y. Chen, “Study of EMC Problems with Vehicles,” in Proceedings of Communications in Computer and Information Science, (Springer, 2013), pp. 159–168.

S. Guttowski, S. Weber, E. Hoene, W. John, and H. Reichl, “EMC issues in cars with electric drives,” in Proceedings of IEEE Symposium on Electromagnetic Compatibility, (IEEE, 2003), pp. 777–782.
[Crossref]

O. Strobel, Communication in Transportation systems (Information Science Reference, 2013).

J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter, D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman, M. Werling, and S. Thrun, “Towards fully autonomous driving: systems and algorithms,” in Proceedings of IEEE Intelligent Vehicles Symposium (IV), (IEEE, 2011), pp. 163–168.
[Crossref]

R. H. Rasshofer, “Functional requirements of future automotive radar systems,” in Proceedings of European Radar Conference, (IEEE, 2007), pp. 259–262.

I. Bilik, O. Bialer, S. Villeval, H. Sharifi, K. Kona, M. Pan, D. Persechini, M. Musni, and K. Geary, “Automotive MIMO radar for urban environments,” in Proceedings of IEEE Radar Conference, (IEEE, 2016), pp. 1–6.

A. Kanno, T. Umezawa, T. Kuri, N. Yamamoto, T. Kawanishi, and Y. N. Wijayanto, “Key technologies for millimeter-wave distributed RADAR system over a radio over fiber network,” in Proceedings of International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), (IEEE, 2016), pp. 1–6.
[Crossref]

M. F. Alam, M. Atiquzzaman, B. B. Duncan, H. Nguyen, and R. Kunath, “On board fiber-optic network architectures for radar and avionics signal distribution” NASA/TM-2000–209776.

D. T. Bui, L. D. Nguyên, and B. Journet, “Improving the behavior of an electro-optic modulator by controlling its temperature,” in Proceedings of International Conference on Advanced Technologies for Communications, (IEEE, 2009), pp. 125–128.
[Crossref]

R. J. Mailloux, Phased array antenna handbook (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Conceptual drawing of the proposed method including the central station on the left, as well as the transmitter and receiver chips on the right. The insets show the spectrum of the transmitted signals for (a) 1/8th of the radar signal with supressed carrier and (b) the received baseband. LD: laser diode, MZM: Mach-Zehnder modulator, ADC: analog to digital converter, PC: computer, PD: photo diode.
Fig. 2
Fig. 2 Schematic of the proof-of-concept optically synchronized radar system. Single mode fiber optic connections are indicated by red lines and electrical connections by black ones. At the bottom, the link budget with measured optical and electrical output powers is displayed. The total link gain for the electrical signal from the master output to the RC input is zero, including the electrical-optical and optical-electrical conversion and all pre and post amplifiers. LDC: laser diode current controller, LD: laser diode, TEC: temperature controller, µC: microcontroller, PD: photo diode, EDFA: Erbium doped fiber amplifier, RC: radar chip.
Fig. 3
Fig. 3 Electrical characterization of the system (a) and the measurement results of the modulator operating point stabilization (b), black: temperature drift, red/green: output power wo/w stabilization.
Fig. 4
Fig. 4 Measurement of the photo diode response for different optical input powers (a) and the frequency response of the whole signal distribution and synchronization system (b).
Fig. 5
Fig. 5 Demonstrator for the fiber optic synchronized radar system with one master and four slave modules on the left side, as well as a measurement of the horizontal resolution with one master and only two slave modules on the right side.

Metrics