Abstract

In recent years, head-mounted display technologies have greatly advanced. In order to overcome the accommodation-convergence conflict, light field displays reconstruct three-dimensional (3D) images with a focusing cue but sacrifice resolution. In this paper, a hybrid head-mounted display system that is based on a liquid crystal microlens array is proposed. By using a time-multiplexed method, the display signals can be divided into light field and two-dimensional (2D) modes to show comfortable 3D images with high resolution compensated by the 2D image. According to the experimental results, the prototype supports a 12.28 ppd resolution in the diagonal direction, which reaches 82% of the traditional virtual reality (VR) head-mounted display (HMD).

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multifocal planes head-mounted displays

Jannick P. Rolland, Myron W. Krueger, and Alexei Goon
Appl. Opt. 39(19) 3209-3215 (2000)

Compact three-dimensional head-mounted display system with Savart plate

Chang-Kun Lee, Seokil Moon, Seungjae Lee, Dongheon Yoo, Jong-Young Hong, and Byoungho Lee
Opt. Express 24(17) 19531-19544 (2016)

References

  • View by:
  • |
  • |
  • |

  1. N. Holliman, “3D display systems,” in Department of Computer Science (University of Durham, 2005).
  2. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  3. L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
    [Crossref]
  4. S. W. Depp and W. E. Howard, “Flat-panel displays,” Sci. Am. 266(3), 90–97 (1993).
    [Crossref]
  5. E. Sutherland, “A head-mounted three dimensional display,” in fall joint computer conference (1968).
  6. K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
    [Crossref]
  7. H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
    [Crossref] [PubMed]
  8. J. P. Rolland and H. Hua, “Head-mounted display systems,” in Encyclopedia of Optical Engineering (Dekker, 2005).
  9. H. McLellan, “Virtual realities,” in Handbook of research for educational communications and technology, (1996).
  10. C. Wheatstone, “Contributions to the physiology of vision.–Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” in Philosophical transactions of the Royal Society of London (1838).
  11. M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
    [Crossref] [PubMed]
  12. R. Burke and L. Brickson, “Focus cue enabled head-mounted display via microlens array,” TOG 32, 220 (2013).
  13. K. Akşit, J. Kautz, and D. Luebke, “Slim near-eye display using pinhole aperture arrays,” Appl. Opt. 54(11), 3422–3427 (2015).
    [Crossref] [PubMed]
  14. F.-C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” ACM Transactions on Graphics 34, 60:1–60:12 (2015).
  15. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [Crossref] [PubMed]
  16. M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
    [Crossref] [PubMed]
  17. E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT Press, 1991), pp. 3–20.
  18. S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), 71–74 (2005).
    [Crossref]
  19. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  20. N. Balram and I. Tošić, “Light-field imaging and display systems,” Inf. Disp. 32(4), 6–13 (2016).
    [Crossref]
  21. X. Jin, L. Liu, and Q. Dai, “Approximation and blind reconstruction of volumetric light field,” Opt. Express 26(13), 16836–16852 (2018).
    [Crossref] [PubMed]
  22. M. Liu, C. Lu, H. Li, and X. Liu, “Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display,” Opt. Express 26(4), 4060–4074 (2018).
    [Crossref] [PubMed]
  23. C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
    [Crossref] [PubMed]
  24. Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26(6), 7598–7613 (2018).
    [Crossref] [PubMed]
  25. Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
    [Crossref] [PubMed]
  26. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36(7), 1598–1603 (1997).
    [Crossref] [PubMed]
  27. H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
    [Crossref] [PubMed]
  28. N. Viganò, H. Der Sarkissian, C. Herzog, O. de la Rochefoucauld, R. van Liere, and K. J. Batenburg, “Tomographic approach for the quantitative scene reconstruction from light field images,” Opt. Express 26(18), 22574–22602 (2018).
    [Crossref] [PubMed]
  29. V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
    [Crossref]
  30. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
    [Crossref] [PubMed]
  31. T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
    [Crossref] [PubMed]
  32. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of resolution limitation of integral photography,” J. Opt. Soc. Am. A 15(8), 2059–2065 (1998).
    [Crossref]
  33. G. Johansson, “Visual perception of biological motion and a model for its analysis,” Percept. Psychophys. 14(2), 201–211 (1973).
    [Crossref]
  34. S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
    [Crossref] [PubMed]
  35. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
    [Crossref] [PubMed]
  36. M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
    [Crossref]
  37. M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
    [Crossref]
  38. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
    [Crossref] [PubMed]
  39. K. W. Arthur and F. P. Brooks, Jr., “Effects of field of view on performance with head-mounted displays,” in University of North Carolina at Chapel Hill (2000).
  40. P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
    [Crossref] [PubMed]
  41. Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
    [Crossref] [PubMed]
  42. A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
    [Crossref] [PubMed]
  43. Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
    [Crossref]
  44. D. MacIsaac, “Google Cardboard: A virtual reality headset for $10?” Phys. Teach. 53(2), 125 (2015).
    [Crossref]
  45. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
    [Crossref]
  46. C.-J. Kim, M. Chang, M. Lee, J. Kim, and Y.-H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
    [Crossref] [PubMed]
  47. Z. Qin, P.-J. Wong, W.-C. Chao, F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Contrast-sensitivity-based evaluation method of a surveillance camera’s visual resolution: improvement from the conventional slanted-edge spatial frequency response method,” Appl. Opt. 56(5), 1464–1471 (2017).
    [Crossref]
  48. G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express 19(6), 5047–5062 (2011).
    [Crossref] [PubMed]
  49. S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
    [Crossref] [PubMed]
  50. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  51. S.-G. Park, J.-H. Jung, Y. Jeong, and B. Lee, “Depth-fused display with improved viewing characteristics,” Opt. Express 21(23), 28758–28770 (2013).
    [Crossref] [PubMed]
  52. S.-G. Park, J.-Y. Hong, C.-K. Lee, and B. Lee, “Real-mode depth-fused display with viewer tracking,” Opt. Express 23(20), 26710–26722 (2015).
    [Crossref] [PubMed]

2018 (7)

X. Jin, L. Liu, and Q. Dai, “Approximation and blind reconstruction of volumetric light field,” Opt. Express 26(13), 16836–16852 (2018).
[Crossref] [PubMed]

M. Liu, C. Lu, H. Li, and X. Liu, “Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display,” Opt. Express 26(4), 4060–4074 (2018).
[Crossref] [PubMed]

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
[Crossref] [PubMed]

Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26(6), 7598–7613 (2018).
[Crossref] [PubMed]

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

N. Viganò, H. Der Sarkissian, C. Herzog, O. de la Rochefoucauld, R. van Liere, and K. J. Batenburg, “Tomographic approach for the quantitative scene reconstruction from light field images,” Opt. Express 26(18), 22574–22602 (2018).
[Crossref] [PubMed]

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (1)

N. Balram and I. Tošić, “Light-field imaging and display systems,” Inf. Disp. 32(4), 6–13 (2016).
[Crossref]

2015 (7)

2014 (3)

2013 (4)

2012 (1)

2011 (2)

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express 19(6), 5047–5062 (2011).
[Crossref] [PubMed]

2010 (2)

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

2009 (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

2008 (1)

K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
[Crossref]

2006 (1)

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

2005 (1)

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), 71–74 (2005).
[Crossref]

2004 (2)

2001 (2)

1999 (1)

M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
[Crossref] [PubMed]

1998 (1)

1997 (1)

1993 (1)

S. W. Depp and W. E. Howard, “Flat-panel displays,” Sci. Am. 266(3), 90–97 (1993).
[Crossref]

1973 (1)

G. Johansson, “Visual perception of biological motion and a model for its analysis,” Percept. Psychophys. 14(2), 201–211 (1973).
[Crossref]

1971 (1)

M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Aksit, K.

Arai, J.

Arimoto, H.

Balram, N.

N. Balram and I. Tošić, “Light-field imaging and display systems,” Inf. Disp. 32(4), 6–13 (2016).
[Crossref]

Batenburg, K. J.

Boominathan, V.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Bremmer, F.

M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
[Crossref] [PubMed]

Brickson, L.

R. Burke and L. Brickson, “Focus cue enabled head-mounted display via microlens array,” TOG 32, 220 (2013).

Brooker, G.

Burke, R.

R. Burke and L. Brickson, “Focus cue enabled head-mounted display via microlens array,” TOG 32, 220 (2013).

Cai, Z.

Chang, M.

Chang, Y.-C.

Chao, W.-C.

Chen, C. W.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Chen, C.-H.

Chen, C.-W.

Chen, M.

Cheng, D.

Cho, M.

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

Chou, P.-Y.

Chu, C.-Y.

Corral, M. M.

Dai, Q.

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

de la Rochefoucauld, O.

Depp, S. W.

S. W. Depp and W. E. Howard, “Flat-panel displays,” Sci. Am. 266(3), 90–97 (1993).
[Crossref]

Der Sarkissian, H.

Doblas, A.

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Erdmann, L.

Fuchs, H.

K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
[Crossref]

Gabriel, K. J.

Gao, B. Z.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Hassanfiroozi, A.

Helfrich, W.

M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Herzog, C.

Hill, L.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Hong, J.-Y.

Hong, S.-H.

Hoshino, H.

Howard, W. E.

S. W. Depp and W. E. Howard, “Flat-panel displays,” Sci. Am. 266(3), 90–97 (1993).
[Crossref]

Hsieh, P.-Y.

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Hua, H.

Huang, C.-T.

Huang, H.

Huang, Y. P.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Huang, Y.-P.

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

Z. Qin, P.-J. Wong, W.-C. Chao, F.-C. Lin, Y.-P. Huang, and H.-P. D. Shieh, “Contrast-sensitivity-based evaluation method of a surveillance camera’s visual resolution: improvement from the conventional slanted-edge spatial frequency response method,” Appl. Opt. 56(5), 1464–1471 (2017).
[Crossref]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

Isono, H.

Jacobs, A.

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Jang, J.-S.

Javidi, B.

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, “Three-dimensional imaging with axially distributed sensing using electronically controlled liquid crystal lens,” Opt. Lett. 37(19), 4125–4127 (2012).
[Crossref] [PubMed]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
[Crossref] [PubMed]

J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
[Crossref] [PubMed]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26(3), 157–159 (2001).
[Crossref] [PubMed]

Jen, T.-H.

Jeong, Y.

Jin, X.

Johansson, G.

G. Johansson, “Visual perception of biological motion and a model for its analysis,” Percept. Psychophys. 14(2), 201–211 (1973).
[Crossref]

Jung, J.-H.

Kautz, J.

Keller, K.

K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
[Crossref]

Kim, C.-J.

Kim, J.

C.-J. Kim, M. Chang, M. Lee, J. Kim, and Y.-H. Won, “Depth plane adaptive integral imaging using a varifocal liquid lens array,” Appl. Opt. 54(10), 2565–2571 (2015).
[Crossref] [PubMed]

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), 71–74 (2005).
[Crossref]

Lappe, M.

M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
[Crossref] [PubMed]

Lee, B.

Lee, C.-K.

Lee, M.

Levoy, M.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Li, H.

Liao, J.

Liao, L. Y.

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Lin, F.-C.

Lin, H.-A.

Liu, L.

Liu, M.

Liu, S.

Liu, X.

Lu, C.

Luebke, D.

MacIsaac, D.

D. MacIsaac, “Google Cardboard: A virtual reality headset for $10?” Phys. Teach. 53(2), 125 (2015).
[Crossref]

Martinez-Corral, M.

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications,” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

McDowall, I.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Min, S.-W.

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), 71–74 (2005).
[Crossref]

Mitra, K.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

Okano, F.

Park, S.-G.

Peng, X.

Qin, Z.

Rosen, J.

Saavedra, G.

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Sanchez-Ortiga, E.

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

Schadt, M.

M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Shen, X.

Shieh, H.-P. D.

Siegel, N.

State, A.

K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
[Crossref]

Stern, A.

Ting, C.-H.

Tošic, I.

N. Balram and I. Tošić, “Light-field imaging and display systems,” Inf. Disp. 32(4), 6–13 (2016).
[Crossref]

Van den Berg, A.

M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
[Crossref] [PubMed]

van Liere, R.

Veeraraghavan, A.

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

Viganò, N.

Wang, H.

Wang, V.

Wang, Y.

Wei, D.

Won, Y.-H.

Wong, P.-J.

Xiao, X.

Xie, C.

Xie, X.

Xin, Z.

Yang, T.

Yao, C.

Yao, G.

Yuyama, I.

Zhang, X.

Zhang, Z.

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett. 18(4), 127–128 (1971).
[Crossref]

Inf. Disp. (1)

N. Balram and I. Tošić, “Light-field imaging and display systems,” Inf. Disp. 32(4), 6–13 (2016).
[Crossref]

J. Disp. Technol. (3)

M. Martinez-Corral, P.-Y. Hsieh, A. Doblas, E. Sanchez-Ortiga, G. Saavedra, and Y.-P. Huang, “Fast axial-scanning widefield microscopy with constant magnification and resolution,” J. Disp. Technol. 11(11), 913–920 (2015).
[Crossref]

K. Keller, A. State, and H. Fuchs, “Head mounted displays for medical use,” J. Disp. Technol. 4(4), 468–472 (2008).
[Crossref]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

J. Microsc. (1)

M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling the 4D light field in a microscope using microlens arrays,” J. Microsc. 235(2), 144–162 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

Y. P. Huang, L. Y. Liao, and C. W. Chen, “2‐D/3‐D switchable autostereoscopic display with multi‐electrically driven liquid‐crystal (MeD‐LC) lenses,” J. Soc. Inf. Disp. 18(9), 642–646 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

S.-W. Min, J. Kim, and B. Lee, “New characteristic equation of three-dimensional integral imaging system and its applications,” Jpn. J. Appl. Phys. 44(2), 71–74 (2005).
[Crossref]

Opt. Express (17)

S.-H. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12(19), 4579–4588 (2004).
[Crossref] [PubMed]

T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23(14), 18415–18421 (2015).
[Crossref] [PubMed]

X. Jin, L. Liu, and Q. Dai, “Approximation and blind reconstruction of volumetric light field,” Opt. Express 26(13), 16836–16852 (2018).
[Crossref] [PubMed]

M. Liu, C. Lu, H. Li, and X. Liu, “Bifocal computational near eye light field displays and Structure parameters determination scheme for bifocal computational display,” Opt. Express 26(4), 4060–4074 (2018).
[Crossref] [PubMed]

C. Yao, D. Cheng, T. Yang, and Y. Wang, “Design of an optical see-through light-field near-eye display using a discrete lenslet array,” Opt. Express 26(14), 18292–18301 (2018).
[Crossref] [PubMed]

Z. Cai, X. Liu, X. Peng, and B. Z. Gao, “Ray calibration and phase mapping for structured-light-field 3D reconstruction,” Opt. Express 26(6), 7598–7613 (2018).
[Crossref] [PubMed]

Z. Xin, D. Wei, X. Xie, M. Chen, X. Zhang, J. Liao, H. Wang, and C. Xie, “Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation,” Opt. Express 26(4), 4035–4049 (2018).
[Crossref] [PubMed]

H. Huang and H. Hua, “Systematic characterization and optimization of 3D light field displays,” Opt. Express 25(16), 18508–18525 (2017).
[Crossref] [PubMed]

N. Viganò, H. Der Sarkissian, C. Herzog, O. de la Rochefoucauld, R. van Liere, and K. J. Batenburg, “Tomographic approach for the quantitative scene reconstruction from light field images,” Opt. Express 26(18), 22574–22602 (2018).
[Crossref] [PubMed]

H. Hua and B. Javidi, “A 3D integral imaging optical see-through head-mounted display,” Opt. Express 22(11), 13484–13491 (2014).
[Crossref] [PubMed]

S.-G. Park, J.-H. Jung, Y. Jeong, and B. Lee, “Depth-fused display with improved viewing characteristics,” Opt. Express 21(23), 28758–28770 (2013).
[Crossref] [PubMed]

S.-G. Park, J.-Y. Hong, C.-K. Lee, and B. Lee, “Real-mode depth-fused display with viewer tracking,” Opt. Express 23(20), 26710–26722 (2015).
[Crossref] [PubMed]

P.-Y. Hsieh, P.-Y. Chou, H.-A. Lin, C.-Y. Chu, C.-T. Huang, C.-H. Chen, Z. Qin, M. M. Corral, B. Javidi, and Y.-P. Huang, “Long working range light field microscope with fast scanning multifocal liquid crystal microlens array,” Opt. Express 26(8), 10981–10996 (2018).
[Crossref] [PubMed]

Y.-C. Chang, T.-H. Jen, C.-H. Ting, and Y.-P. Huang, “High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display,” Opt. Express 22(3), 2714–2724 (2014).
[Crossref] [PubMed]

A. Hassanfiroozi, Y.-P. Huang, B. Javidi, and H.-P. D. Shieh, “Hexagonal liquid crystal lens array for 3D endoscopy,” Opt. Express 23(2), 971–981 (2015).
[Crossref] [PubMed]

G. Brooker, N. Siegel, V. Wang, and J. Rosen, “Optimal resolution in Fresnel incoherent correlation holographic fluorescence microscopy,” Opt. Express 19(6), 5047–5062 (2011).
[Crossref] [PubMed]

S. Liu and H. Hua, “A systematic method for designing depth-fused multi-focal plane three-dimensional displays,” Opt. Express 18(11), 11562–11573 (2010).
[Crossref] [PubMed]

Opt. Lett. (3)

Percept. Psychophys. (1)

G. Johansson, “Visual perception of biological motion and a model for its analysis,” Percept. Psychophys. 14(2), 201–211 (1973).
[Crossref]

Phys. Teach. (1)

D. MacIsaac, “Google Cardboard: A virtual reality headset for $10?” Phys. Teach. 53(2), 125 (2015).
[Crossref]

Proc. IEEE (2)

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99(4), 556–575 (2011).
[Crossref]

L. Hill and A. Jacobs, “3-D liquid crystal displays and their applications,” Proc. IEEE 94(3), 575–590 (2006).
[Crossref]

Sci. Am. (1)

S. W. Depp and W. E. Howard, “Flat-panel displays,” Sci. Am. 266(3), 90–97 (1993).
[Crossref]

TOG (1)

R. Burke and L. Brickson, “Focus cue enabled head-mounted display via microlens array,” TOG 32, 220 (2013).

Trends Cogn. Sci. (Regul. Ed.) (1)

M. Lappe, F. Bremmer, and A. Van den Berg, “Perception of self-motion from visual flow,” Trends Cogn. Sci. (Regul. Ed.) 3(9), 329–336 (1999).
[Crossref] [PubMed]

Other (9)

N. Holliman, “3D display systems,” in Department of Computer Science (University of Durham, 2005).

F.-C. Huang, D. P. Luebke, and G. Wetzstein, “The light field stereoscope,” ACM Transactions on Graphics 34, 60:1–60:12 (2015).

E. H. Adelson and J. R. Bergen, “The plenoptic function and the elements of early vision,” in Computational Models of Visual Processing (MIT Press, 1991), pp. 3–20.

E. Sutherland, “A head-mounted three dimensional display,” in fall joint computer conference (1968).

J. P. Rolland and H. Hua, “Head-mounted display systems,” in Encyclopedia of Optical Engineering (Dekker, 2005).

H. McLellan, “Virtual realities,” in Handbook of research for educational communications and technology, (1996).

C. Wheatstone, “Contributions to the physiology of vision.–Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision,” in Philosophical transactions of the Royal Society of London (1838).

V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving resolution and depth-of-field of light field cameras using a hybrid imaging system,” in Proceedings IEEE Conference on Computational Photography (IEEE, 2014), pp. 1–10.
[Crossref]

K. W. Arthur and F. P. Brooks, Jr., “Effects of field of view on performance with head-mounted displays,” in University of North Carolina at Chapel Hill (2000).

Supplementary Material (1)

NameDescription
» Visualization 1       This video shows the hybrid virtual image containing a 3D cube and a colorful diamond to evaluate the image quality of the proposed hybrid light field head-mounted display, which consists an OLED panel, an electric circuit, a LC MLA, a TN cell, a pol

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 The relationship between accommodation and convergence distances in (a) the real world, (b) a binocular 3D display, and (c) a light field 3D display.
Fig. 2
Fig. 2 The driving methods and working functions of the display, LC MLA, and TN cell in our proposed system.
Fig. 3
Fig. 3 Schematic layout of the hybrid VR HMD in light field mode.
Fig. 4
Fig. 4 Schematic layout of the hybrid VR HMD in 2D mode.
Fig. 5
Fig. 5 (a)(b) Structure and (c) electric line of the LC MLA optical component.
Fig. 6
Fig. 6 (a)(b) Interference pattern (IP) and (c) point spread function (PSF) of the HiR LC MLA with 8 V and 1 MHz as the driving conditions.
Fig. 7
Fig. 7 The polarization contrast of the TN cell at different wavelengths.
Fig. 8
Fig. 8 Structure and parameters of the monocular optical system.
Fig. 9
Fig. 9 Theoretical resolution performance of the hybrid HMD.
Fig. 10
Fig. 10 The optical components and experimental setup of the hybrid VR HMD.
Fig. 11
Fig. 11 Captured images of the USAF pattern in the (a) LF, (b) hybrid, and (c) 2D image planes.
Fig. 12
Fig. 12 Comparison between the LF, hybrid, and 2D virtual images (see Visualization 1).
Fig. 13
Fig. 13 The verified positions of the reconstructed LF, 2D, and hybrid imaging planes.
Fig. 14
Fig. 14 The depth range with focus cues of the hybrid virtual image.

Tables (7)

Tables Icon

Table 1 Specifications of OLED panel.

Tables Icon

Table 2 Specifications of LC MLA.

Tables Icon

Table 3 Specifications of the TN cell.

Tables Icon

Table 4 Specifications of the main lens.

Tables Icon

Table 5 Specifications of the proposed hybrid VR HMD.

Tables Icon

Table 6 Image resolution of the LF, 2D and hybrid image planes in the hybrid VR HMD.

Tables Icon

Table 7 Comparison of traditional, light field, and hybrid VR HMDs.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f n 0 ( D/2 ) 2 2Δnd ,
d= S oLF f M ( LΔx e r ) f M +( LΔx e r ) ,
Resolutio n LF = 1 P i ( g+d g )( L e r S oLF ) L 2 π 90 ,
Resolutio n 2D = 1 P i ( LΔx e r S oLF d ) LΔx 2 π 90 ,
Resolution(lp/mm)= 2 group number+( element number1 )/6 .

Metrics