Abstract

We report a 10-Gbaud fiber-optic cipher transmission system by using a phase-shift keying (PSK) Y-00 quantum stream cipher. The PSK Y-00 cipher is a symmetric-key direct data encryption technique based on extremely high-order random phase modulation using a pre-shared short key. Neighboring signal phases following encryption are masked by quantum (shot) noise, which provides security based on shot noise’s inherent effects. To implement such a system, we utilize coarse-to-fine phase modulation with two cascaded phase modulators and digital decryption incorporated into digital signal processing (DSP) for intra-dyne coherent detection. We demonstrate 10-Gbaud PSK Y-00 cipher transmission over a 400-km standard single-mode fiber (SSMF). The coarse-to-fine phase modulation achieves 217 phase levels for signal masking by shot noise. The DSP with decryption realizes detection of the cipher without penalties. Masking 167 signal phase levels by shot noise is achieved at a bit-error ratio defined by a hard-decision forward-error correction threshold (3.8 × 10−3) in the transmissions over the 400-km SSMF.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system

Fumio Futami, Kyle Guan, Jurgen Gripp, Kentaro Kato, Ken Tanizawa, Sethumadhavan Chandrasekhar, and Peter J. Winzer
Opt. Express 25(26) 33338-33349 (2017)

QAM quantum stream cipher using digital coherent optical transmission

Masataka Nakazawa, Masato Yoshida, Toshihiko Hirooka, and Keisuke Kasai
Opt. Express 22(4) 4098-4107 (2014)

Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km

Masato Yoshida, Toshihiko Hirooka, Keisuke Kasai, and Masataka Nakazawa
Opt. Express 24(1) 652-661 (2016)

References

  • View by:
  • |
  • |
  • |

  1. G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
    [Crossref] [PubMed]
  2. F. Futami and O. Hirota, ” 100 Gbit/s (10 × 10 Gbit/s) Y-00 Cipher Transmission over 120 km for Secure Optical Fiber Communication between Data Centers,” in Opto-Electronics and Communications Conference (OECC2014), paper MO1A2.
  3. F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, S. Chandrasekhar, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
    [Crossref]
  4. E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
    [Crossref]
  5. C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
    [Crossref]
  6. G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.
    [Crossref]
  7. K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
    [Crossref]
  8. K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
    [Crossref]
  9. M. Nakazawa, M. Yoshida, T. Hirooka, and K. Kasai, “QAM quantum stream cipher using digital coherent optical transmission,” Opt. Express 22(4), 4098–4107 (2014).
    [Crossref] [PubMed]
  10. M. Yoshida, T. Hirooka, K. Kasai, and M. Nakazawa, “Single-channel 40 Gbit/s digital coherent QAM quantum noise stream cipher transmission over 480 km,” Opt. Express 24(1), 652–661 (2016).
    [Crossref] [PubMed]
  11. K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 19 (2017).
    [Crossref]
  12. K. Tanizawa and F. Futami, “PSK Y-00 Quantum Stream Cipher with 217 Levels Enabled by Coarse-to-Fine Modulation Using Cascaded Phase Modulators,” in 44th European Conference on Optical Communications (ECOC 2018), paper We2.36.
    [Crossref]
  13. O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
    [Crossref]
  14. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  15. B. Szafraniec, B. Nebendahl, and T. Marshall, “Polarization demultiplexing in Stokes space,” Opt. Express 18(17), 17928–17939 (2010).
    [Crossref] [PubMed]
  16. D.-S. Ly-Gagnon, S. Tsukamoto, K. Katoh, and K. Kikuchi, “Coherent detection of optical quadrature phase-shift keying signals with carrier phase estimation,” J. Lightwave Technol. 24(1), 12–21 (2006).
    [Crossref]

2018 (1)

K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
[Crossref]

2017 (2)

2016 (1)

2014 (1)

2010 (1)

2008 (1)

2007 (1)

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

2006 (1)

2005 (3)

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

2003 (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Barbosa, G. A.

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Chandrasekhar, S.

Corndorf, E.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Futami, F.

K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, S. Chandrasekhar, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

F. Futami and O. Hirota, ” 100 Gbit/s (10 × 10 Gbit/s) Y-00 Cipher Transmission over 120 km for Secure Optical Fiber Communication between Data Centers,” in Opto-Electronics and Communications Conference (OECC2014), paper MO1A2.

Gripp, J.

Guan, K.

Hirooka, T.

Hirota, O.

K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

F. Futami and O. Hirota, ” 100 Gbit/s (10 × 10 Gbit/s) Y-00 Cipher Transmission over 120 km for Secure Optical Fiber Communication between Data Centers,” in Opto-Electronics and Communications Conference (OECC2014), paper MO1A2.

Kanter, G. S.

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Kasai, K.

Kato, K.

K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 19 (2017).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, S. Chandrasekhar, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

Katoh, K.

Kikuchi, K.

Kumar, P.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Liang, C.

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

Ly-Gagnon, D.-S.

Marshall, T.

Nakazawa, M.

Nebendahl, B.

Savory, S. J.

Szafraniec, B.

Tanizawa, K.

K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
[Crossref]

F. Futami, K. Guan, J. Gripp, K. Kato, K. Tanizawa, S. Chandrasekhar, and P. J. Winzer, “Y-00 quantum stream cipher overlay in a coherent 256-Gbit/s polarization multiplexed 16-QAM WDM system,” Opt. Express 25(26), 33338–33349 (2017).
[Crossref]

Tsukamoto, S.

Winzer, P. J.

Yoshida, M.

Yuen, H. P.

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

IEEE Photonics Technol. Lett. (1)

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, “Quantum noise protected data encryption in a WDM network,” IEEE Photonics Technol. Lett. 17(7), 1573–1575 (2005).
[Crossref]

IEICE Communications Express (1)

K. Tanizawa, F. Futami, and O. Hirota, “Digital feedforward carrier phase estimation for PSK Y-00 quantum-noise randomized stream cipher,” IEICE Communications Express 7(1), 1–6 (2018).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (5)

Phys. Rev. A (2)

E. Corndorf, C. Liang, G. S. Kanter, P. Kumar, and H. P. Yuen, “Quantum-noise randomized data encryption for wavelength-division-multiplexed fiber-optic networks,” Phys. Rev. A 71(6), 062326 (2005).
[Crossref]

O. Hirota, “Practical security analysis of a quantum stream cipher by the Yuen 2000 protocol,” Phys. Rev. A 76(3), 032307 (2007).
[Crossref]

Phys. Rev. Lett. (1)

G. A. Barbosa, E. Corndorf, P. Kumar, and H. P. Yuen, “Secure communication using mesoscopic coherent states,” Phys. Rev. Lett. 90(22), 227901 (2003).
[Crossref] [PubMed]

Proc. SPIE (2)

K. Kato and O. Hirota, “Quantum quadrature amplitude modulation system and its applicability to coherent state quantum cryptography,” Proc. SPIE 5893, 589303 (2005).
[Crossref]

K. Kato, “A unified analysis of optical signal modulation formats for quantum enigma cipher,” Proc. SPIE 10409, 19 (2017).
[Crossref]

Other (3)

K. Tanizawa and F. Futami, “PSK Y-00 Quantum Stream Cipher with 217 Levels Enabled by Coarse-to-Fine Modulation Using Cascaded Phase Modulators,” in 44th European Conference on Optical Communications (ECOC 2018), paper We2.36.
[Crossref]

G. S. Kanter, S. X. Wang, R. A. Lipa, and D. Reilly, “Self-Coherent Differential Phase Detection for Optical Physical-Layer Secure Communications,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.41.
[Crossref]

F. Futami and O. Hirota, ” 100 Gbit/s (10 × 10 Gbit/s) Y-00 Cipher Transmission over 120 km for Secure Optical Fiber Communication between Data Centers,” in Opto-Electronics and Communications Conference (OECC2014), paper MO1A2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Operating principle of the PSK Y-00 cipher.
Fig. 2
Fig. 2 Quantum-noise masking number vs. bit number of bases in 10-, 25-, and 50-Gbaud PSK Y-00 cipher.
Fig. 3
Fig. 3 Configuration and main operating principle of coarse-to-fine phase modulation for the Y-00 cipher.
Fig. 4
Fig. 4 Flow of DSP for the PSK Y-00 cipher.
Fig. 5
Fig. 5 Experimental setup for 10-Gbaud PSK Y-00 cipher transmission.
Fig. 6
Fig. 6 Constellation diagrams of PSK Y-00 ciphers with (a) four bases and (b) eight bases.
Fig. 7
Fig. 7 Q factors of back-to-back conditions at an OSNR of 7 dB for various numbers of bases.
Fig. 8
Fig. 8 Results of 10-Gbaud PSK Y-00 transmission: constellation diagrams (a) under back-to-back conditions and (b) after 400-km transmission, and (c) BER characteristics.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ= Δ φ shot Δ θ basis = 2 (m1) π Rh ν 0 P 0
θ pp_PM1 =π( 1 1 2 K )
θ pp_PM2 = π 2 K ( 1 1 2 L )

Metrics