Abstract

A coherent-dispersion stereo-imaging spectrometer is presented, which combines three-view stereo imaging, interferometric spectroscopy and dispersive spectroscopy. Three area-array detectors record three spectral images of each scene unit from three views. For each of the three views, each scene unit is imaged on a given column of one area-array detector, and different wavelengths are dispersed across different rows of that column. For each scene unit, multiple interferograms are simultaneously generated at each view, each interferogram covering a separate wavelength range and located in a separate pixel. The orthographic view image is used to create a two-dimensional orthophoto image. The front view and back view images are used to reconstruct the three-dimensional stereoscopic image. Preliminary theoretical calculations are given. The instrument is a unique concept to obtain three-dimensional spatial information and one-dimensional spectral information while achieving high spectral resolution measurement of an ultraviolet-visible broadband spectral range (e.g., 0.05 nm at 450 nm together with 0.1 nm at 700 nm). It will be suitable for ultraviolet-visible hyperspectral remote sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hadamard transform imager and imaging spectrometer

Roderick D. Swift, Richard B. Wattson, John A. Decker, Ralph Paganetti, and Martin Harwit
Appl. Opt. 15(6) 1595-1609 (1976)

Rapid microscopy measurement of very large spectral images

Moshe Lindner, Zav Shotan, and Yuval Garini
Opt. Express 24(9) 9511-9527 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
    [Crossref] [PubMed]
  2. A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
    [Crossref]
  3. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
    [Crossref] [PubMed]
  4. C. L. Wyatt, “Infrared spectrometer: liquid-helium-cooled rocketborne circular-variable filter,” Appl. Opt. 14(12), 3086–3091 (1975).
    [Crossref] [PubMed]
  5. H. R. Morris, C. C. Hoyt, and P. J. Treado, “Imaging spectrometers for fluorescence and Raman microscopy: acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48(7), 857–866 (1994).
    [Crossref]
  6. S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46(10), 1896–1910 (2007).
    [Crossref] [PubMed]
  7. Z. Zheng, G. Yang, H. Li, and X. Liu, “Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range,” Opt. Express 19(3), 2158–2164 (2011).
    [Crossref] [PubMed]
  8. M. Abuleil and I. Abdulhalim, “Narrowband multispectral liquid crystal tunable filter,” Opt. Lett. 41(9), 1957–1960 (2016).
    [Crossref] [PubMed]
  9. D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
    [Crossref] [PubMed]
  10. N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43(13), 2752–2759 (2004).
    [Crossref] [PubMed]
  11. N. Gupta and V. Voloshinov, “Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30(9), 985–987 (2005).
    [Crossref] [PubMed]
  12. P. Wang and Z. Zhang, “Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application,” Opt. Express 24(9), 9888–9895 (2016).
    [Crossref] [PubMed]
  13. H. Zhao, Z. Ji, G. Jia, Y. Zhang, Y. Li, and D. Wang, “MWIR thermal imaging spectrometer based on the acousto-optic tunable filter,” Appl. Opt. 56(25), 7269–7276 (2017).
    [Crossref] [PubMed]
  14. S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
    [Crossref]
  15. O. I. Korablev, D. A. Belyaev, Y. S. Dobrolenskiy, A. Y. Trokhimovskiy, and Y. K. Kalinnikov, “Acousto-optic tunable filter spectrometers in space missions [Invited],” Appl. Opt. 57(10), C103–C119 (2018).
    [Crossref] [PubMed]
  16. W. M. Porter and H. T. Enmark, “A System Overview of the Airborne Visible/Infrared Imaging Spectrometer (Aviris),” Proc. SPIE 834, 22–31 (1987).
    [Crossref]
  17. R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
    [Crossref]
  18. R. D. Swift, R. B. Wattson, J. A. Decker, R. Paganetti, and M. Harwit, “Hadamard transform imager and imaging spectrometer,” Appl. Opt. 15(6), 1595–1609 (1976).
    [Crossref] [PubMed]
  19. W. H. Steel, Interferometry (Cambridge University, 1983).
  20. J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).,” Appl. Opt. 30(18), 2575–2578 (1991).
    [Crossref] [PubMed]
  21. C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
    [Crossref]
  22. G. Durry and G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34(12), 1971–1981 (1995).
    [Crossref] [PubMed]
  23. C. M. Snively, S. Katzenberger, G. Oskarsdottir, and J. Lauterbach, “Fourier-transform infrared imaging using a rapid-scan spectrometer,” Opt. Lett. 24(24), 1841–1843 (1999).
    [Crossref] [PubMed]
  24. C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
    [Crossref]
  25. J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
    [Crossref]
  26. R. K. Chan, P. K. Lim, X. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006).
    [Crossref] [PubMed]
  27. P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).
  28. Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
    [Crossref] [PubMed]
  29. Y. Ferrec, J. Taboury, H. Sauer, P. Chavel, P. Fournet, C. Coudrain, J. Deschamps, and J. Primot, “Experimental results from an airborne static Fourier transform imaging spectrometer,” Appl. Opt. 50(30), 5894–5904 (2011).
    [Crossref] [PubMed]
  30. Q. Yang, B. Zhao, and D. Wen, “Principle and analysis of a moving double-sided mirror interferometer,” Opt. Laser Technol. 44(5), 1256–1260 (2012).
    [Crossref]
  31. Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
    [Crossref]
  32. M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
    [Crossref] [PubMed]
  33. S. Pacheco and R. Liang, “Snapshot, reconfigurable multispectral and multi-polarization telecentric imaging system,” Opt. Express 22(13), 16377–16385 (2014).
    [Crossref] [PubMed]
  34. P. Wang and R. Menon, “Computational multispectral video imaging [Invited],” J. Opt. Soc. Am. A 35(1), 189–199 (2018).
    [Crossref] [PubMed]
  35. T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16(16), 1277–1279 (1991).
    [Crossref] [PubMed]
  36. T. Okamoto, A. Takahashi, and I. Yamaguchi, “Simultaneous Acquisition of Spectral and Spatial Intensity Distribution,” Appl. Spectrosc. 47(8), 1198–1202 (1993).
    [Crossref]
  37. M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34(22), 4817–4826 (1995).
    [Crossref] [PubMed]
  38. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997).
    [Crossref] [PubMed]
  39. J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14(11), 2951–2961 (1997).
    [Crossref]
  40. F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
    [Crossref]
  41. W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
    [Crossref] [PubMed]
  42. A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
    [Crossref] [PubMed]
  43. Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a digital-micromirror-device-based multishot snapshot spectral imaging system,” Opt. Lett. 36(14), 2692–2694 (2011).
    [Crossref] [PubMed]
  44. Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20(7), 7173–7183 (2012).
    [Crossref] [PubMed]
  45. N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
    [Crossref]
  46. Q. Yang, “Static broadband snapshot imaging spectrometer,” Opt. Eng. 52(5), 053003 (2013).
    [Crossref]
  47. Q. Yang, “Compact static infrared broadband snapshot imaging spectrometer,” Chin. Opt. Lett. 12(3), 031201 (2014).
    [Crossref]
  48. Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
    [Crossref] [PubMed]
  49. H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
    [Crossref] [PubMed]
  50. Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
    [Crossref] [PubMed]
  51. P. Connes and G. Michel, “Astronomical Fourier spectrometer,” Appl. Opt. 14(9), 2067–2084 (1975).
    [Crossref] [PubMed]
  52. T. Hirschfeld, “Fellgett’s Advantage in UV-VIS Multiplex Spectroscopy,” Appl. Spectrosc. 30(1), 68–69 (1976).
    [Crossref]
  53. P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17(9), 1327–1331 (1978).
    [Crossref] [PubMed]
  54. E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41(7), 1182–1184 (1987).
    [Crossref]
  55. L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
    [Crossref]
  56. P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
    [Crossref]
  57. A. Barducci, D. Guzzi, C. Lastri, V. Nardino, P. Marcoionni, and I. Pippi, “Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
    [Crossref] [PubMed]
  58. A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
    [Crossref] [PubMed]
  59. Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
    [Crossref] [PubMed]
  60. Q. Yang, “Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer,” OSA Continuum 1(3), 812–821 (2018).
    [Crossref]
  61. T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).
  62. B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).
  63. N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009).
    [Crossref] [PubMed]
  64. X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
    [Crossref] [PubMed]
  65. M. A. Preciado, G. Carles, and A. R. Harvey, “Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths,” OSA Continuum 1(1), 170–180 (2018).
    [Crossref]
  66. S. Komatsu, A. Markman, A. Mahalanobis, K. Chen, and B. Javidi, “Three-dimensional integral imaging and object detection using long-wave infrared imaging,” Appl. Opt. 56(9), D120–D126 (2017).
    [Crossref] [PubMed]
  67. A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
    [Crossref] [PubMed]
  68. M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
    [Crossref]
  69. J. V. Sweedler, R. D. Jalkian, G. R. Sims, and M. B. Denton, “Crossed Interferometric Dispersive Spectroscopy,” Appl. Spectrosc. 44(1), 14–20 (1990).
    [Crossref]
  70. J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .
  71. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).
  72. Q. Yang and W. Wang, “Compact orthogonal-dispersion device using a prism and a transmission grating,” J. Eur. Opt. Soc. 14(1), 8 (2018).
    [Crossref]
  73. T. Huen, “Reflectance of thinly oxidized silicon at normal incidence,” Appl. Opt. 18(12), 1927–1932 (1979).
    [Crossref] [PubMed]
  74. K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
    [Crossref]
  75. E. V. Chandler, C. G. Durfee, and J. A. Squier, “Integrated spectrometer design with application to multiphoton microscopy,” Opt. Express 19(1), 118–127 (2011).
    [Crossref] [PubMed]
  76. M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

2018 (10)

O. I. Korablev, D. A. Belyaev, Y. S. Dobrolenskiy, A. Y. Trokhimovskiy, and Y. K. Kalinnikov, “Acousto-optic tunable filter spectrometers in space missions [Invited],” Appl. Opt. 57(10), C103–C119 (2018).
[Crossref] [PubMed]

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

P. Wang and R. Menon, “Computational multispectral video imaging [Invited],” J. Opt. Soc. Am. A 35(1), 189–199 (2018).
[Crossref] [PubMed]

Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
[Crossref] [PubMed]

Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
[Crossref] [PubMed]

Q. Yang, “Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer,” OSA Continuum 1(3), 812–821 (2018).
[Crossref]

M. A. Preciado, G. Carles, and A. R. Harvey, “Video-rate computational super-resolution and integral imaging at longwave-infrared wavelengths,” OSA Continuum 1(1), 170–180 (2018).
[Crossref]

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Q. Yang and W. Wang, “Compact orthogonal-dispersion device using a prism and a transmission grating,” J. Eur. Opt. Soc. 14(1), 8 (2018).
[Crossref]

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

2017 (3)

2016 (3)

2015 (1)

2014 (4)

2013 (4)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Q. Yang, “Static broadband snapshot imaging spectrometer,” Opt. Eng. 52(5), 053003 (2013).
[Crossref]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (4)

2010 (3)

2009 (3)

2008 (1)

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

2007 (1)

2006 (2)

2005 (1)

2004 (2)

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43(13), 2752–2759 (2004).
[Crossref] [PubMed]

J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
[Crossref]

2002 (2)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

1999 (1)

1997 (2)

1995 (3)

1994 (2)

1993 (2)

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

T. Okamoto, A. Takahashi, and I. Yamaguchi, “Simultaneous Acquisition of Spectral and Spatial Intensity Distribution,” Appl. Spectrosc. 47(8), 1198–1202 (1993).
[Crossref]

1991 (2)

1990 (1)

1987 (2)

E. Voigtman and J. D. Winefordner, “The multiplex disadvantage and excess low-frequency noise,” Appl. Spectrosc. 41(7), 1182–1184 (1987).
[Crossref]

W. M. Porter and H. T. Enmark, “A System Overview of the Airborne Visible/Infrared Imaging Spectrometer (Aviris),” Proc. SPIE 834, 22–31 (1987).
[Crossref]

1985 (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

1979 (1)

1978 (1)

1976 (2)

1975 (2)

Abdulhalim, I.

Abuleil, M.

An, M.

Anderson, M. E.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Arce, G. R.

Bao, W.

Barducci, A.

Basedow, R. W.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Belyaev, D. A.

Bennett, C. L.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Bergstralh, J.

Brady, D. J.

Brodzik, A. K.

Carles, G.

Carmer, D. C.

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

Carter, M. R.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Chan, M. H.

Chan, R. K.

Chandler, E. V.

Chavel, P.

Chen, K.

Chen, Z.

Connes, P.

Coudrain, C.

Decker, J. A.

Denton, M. B.

Dereniak, E.

Dereniak, E. L.

Deschamps, J.

Descour, M.

Descour, M. R.

Ding, Z.

DiSalvo, S.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

Dobrolenskiy, Y. S.

Dumont, P.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

Durfee, C. G.

Durry, G.

Enmark, H. T.

W. M. Porter and H. T. Enmark, “A System Overview of the Airborne Visible/Infrared Imaging Spectrometer (Aviris),” Proc. SPIE 834, 22–31 (1987).
[Crossref]

Fellgett, P. B.

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

Ferrec, Y.

Fields, D. J.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Fournet, P.

Gebhart, S. C.

Gerstenkorn, S.

Glenar, D. A.

Goetz, A. F. H.

A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Guelachvili, G.

Guo, F.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Gupta, N.

Guzzi, D.

Hagen, N.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Harvey, A. R.

Harwit, M.

He, X.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Heinonen, J.

J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
[Crossref]

Hernandez, J. A. M.

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Hillman, J. J.

Hirschfeld, T.

Horneman, V. M.

Hoyt, C. C.

Huen, T.

Jalkian, R. D.

Javidi, B.

Ji, Z.

Jia, G.

Kalinnikov, Y. K.

Katz, B.

Katzenberger, S.

Kauppinen, I.

J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
[Crossref]

Kauppinen, J.

J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
[Crossref]

J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).,” Appl. Opt. 30(18), 2575–2578 (1991).
[Crossref] [PubMed]

Komatsu, S.

Korablev, O. I.

Kudenov, M. W.

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref] [PubMed]

Lastri, C.

Lau, D.

Lauterbach, J.

Li, H.

Li, P.

Li, Q.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Li, Y.

Liang, R.

Lim, P. K.

Liu, H.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Liu, L.

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

Liu, X.

Lomheim, T. S.

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

Luc, P.

Lv, P.

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

Mahadevan-Jansen, A.

Mahalanobis, A.

Maker, P. D.

Manohar, S.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Marcoionni, P.

Markman, A.

Martinez-Corral, M.

Martínez-Corral, M.

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Menon, R.

Michel, G.

Mirza, I. O.

Mooney, J. M.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

J. M. Mooney, V. E. Vickers, M. An, and A. K. Brodzik, “High-throughput hyperspectral infrared camera,” J. Opt. Soc. Am. A 14(11), 2951–2961 (1997).
[Crossref]

Morris, H. R.

Murakami, Y.

Nakazaki, K.

Nardino, V.

Ohyama, N.

Okamoto, T.

Oskarsdottir, G.

Pacheco, S.

Paganetti, R.

Pippi, I.

Pitsianis, N. P.

Porter, W. M.

W. M. Porter and H. T. Enmark, “A System Overview of the Airborne Visible/Infrared Imaging Spectrometer (Aviris),” Proc. SPIE 834, 22–31 (1987).
[Crossref]

Prather, D. W.

Preciado, M. A.

Primot, J.

Razansky, D.

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

Reeves, T. E.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

Rock, B. N.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Rosen, J.

Rueda, H.

Saif, B.

Sauer, H.

Schumacher, A. B.

Schumann, L. W.

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

Shaked, N. T.

Shen, X.

Shen, Y.

Shepherd, F. D.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

Sims, G. R.

Snively, C. M.

Solomon, J. E.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Squier, J. A.

Stern, A.

Sun, X.

Sweedler, J. V.

Swift, R. D.

Taboury, J.

Takahashi, A.

Thome, K. J.

Thompson, R. C.

Treado, P. J.

Trokhimovskiy, A. Y.

Vane, G.

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Vickers, V. E.

Voigtman, E.

Volin, C. E.

Voloshinov, V.

Wagadarikar, A. A.

Wang, C.

Wang, D.

Wang, P.

Wang, W.

Q. Yang and W. Wang, “Compact orthogonal-dispersion device using a prism and a transmission grating,” J. Eur. Opt. Soc. 14(1), 8 (2018).
[Crossref]

Wang, X.

Wang, Y.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Wattson, R. B.

Weeks, M. M.

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

Wen, D.

Q. Yang, B. Zhao, and D. Wen, “Principle and analysis of a moving double-sided mirror interferometer,” Opt. Laser Technol. 44(5), 1256–1260 (2012).
[Crossref]

Wilson, D. W.

Winefordner, J. D.

Wu, Y.

Wyatt, C. L.

Xiangli, B.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

Xiao, X.

Xu, D.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Xu, K.

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

Yamaguchi, I.

Yamaguchi, M.

Yang, G.

Yang, Q.

Q. Yang and W. Wang, “Compact orthogonal-dispersion device using a prism and a transmission grating,” J. Eur. Opt. Soc. 14(1), 8 (2018).
[Crossref]

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
[Crossref] [PubMed]

Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
[Crossref] [PubMed]

Q. Yang, “Ultrahigh-resolution rapid-scan ultraviolet-visible spectrometer,” OSA Continuum 1(3), 812–821 (2018).
[Crossref]

Q. Yang, “Compact static infrared broadband snapshot imaging spectrometer,” Chin. Opt. Lett. 12(3), 031201 (2014).
[Crossref]

Q. Yang, “Static broadband snapshot imaging spectrometer,” Opt. Eng. 52(5), 053003 (2013).
[Crossref]

Q. Yang, B. Zhao, and D. Wen, “Principle and analysis of a moving double-sided mirror interferometer,” Opt. Laser Technol. 44(5), 1256–1260 (2012).
[Crossref]

Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
[Crossref] [PubMed]

Yuan, X.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

Zhang, C.

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

Zhang, Y.

Zhang, Z.

Zhao, B.

Q. Yang, B. Zhao, and D. Wen, “Principle and analysis of a moving double-sided mirror interferometer,” Opt. Laser Technol. 44(5), 1256–1260 (2012).
[Crossref]

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

Zhao, H.

Zheng, Z.

Adv. Opt. Photonics (2)

S. Manohar and D. Razansky, “Photoacoustics: a historical review,” Adv. Opt. Photonics 8(4), 586–617 (2016).
[Crossref]

M. Martínez-Corral and B. Javidi, “Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems,” Adv. Opt. Photonics 10(3), 512–566 (2018).
[Crossref]

Appl. Opt. (19)

T. Huen, “Reflectance of thinly oxidized silicon at normal incidence,” Appl. Opt. 18(12), 1927–1932 (1979).
[Crossref] [PubMed]

A. Barducci, D. Guzzi, C. Lastri, V. Nardino, P. Marcoionni, and I. Pippi, “Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry,” Appl. Opt. 49(28), 5366–5373 (2010).
[Crossref] [PubMed]

N. T. Shaked, B. Katz, and J. Rosen, “Review of three-dimensional holographic imaging by multiple-viewpoint-projection based methods,” Appl. Opt. 48(34), H120–H136 (2009).
[Crossref] [PubMed]

X. Xiao, B. Javidi, M. Martinez-Corral, and A. Stern, “Advances in three-dimensional integral imaging: sensing, display, and applications [Invited],” Appl. Opt. 52(4), 546–560 (2013).
[Crossref] [PubMed]

S. Komatsu, A. Markman, A. Mahalanobis, K. Chen, and B. Javidi, “Three-dimensional integral imaging and object detection using long-wave infrared imaging,” Appl. Opt. 56(9), D120–D126 (2017).
[Crossref] [PubMed]

P. Connes and G. Michel, “Astronomical Fourier spectrometer,” Appl. Opt. 14(9), 2067–2084 (1975).
[Crossref] [PubMed]

P. Luc and S. Gerstenkorn, “Fourier transform spectroscopy in the visible and ultraviolet range,” Appl. Opt. 17(9), 1327–1331 (1978).
[Crossref] [PubMed]

O. I. Korablev, D. A. Belyaev, Y. S. Dobrolenskiy, A. Y. Trokhimovskiy, and Y. K. Kalinnikov, “Acousto-optic tunable filter spectrometers in space missions [Invited],” Appl. Opt. 57(10), C103–C119 (2018).
[Crossref] [PubMed]

R. D. Swift, R. B. Wattson, J. A. Decker, R. Paganetti, and M. Harwit, “Hadamard transform imager and imaging spectrometer,” Appl. Opt. 15(6), 1595–1609 (1976).
[Crossref] [PubMed]

C. L. Wyatt, “Infrared spectrometer: liquid-helium-cooled rocketborne circular-variable filter,” Appl. Opt. 14(12), 3086–3091 (1975).
[Crossref] [PubMed]

S. C. Gebhart, R. C. Thompson, and A. Mahadevan-Jansen, “Liquid-crystal tunable filter spectral imaging for brain tumor demarcation,” Appl. Opt. 46(10), 1896–1910 (2007).
[Crossref] [PubMed]

D. A. Glenar, J. J. Hillman, B. Saif, and J. Bergstralh, “Acousto-optic imaging spectropolarimetry for remote sensing,” Appl. Opt. 33(31), 7412–7424 (1994).
[Crossref] [PubMed]

N. Gupta and V. Voloshinov, “Hyperspectral imager, from ultraviolet to visible, with a KDP acousto-optic tunable filter,” Appl. Opt. 43(13), 2752–2759 (2004).
[Crossref] [PubMed]

J. Kauppinen and V. M. Horneman, “Large aperture cube corner interferometer with a resolution of 0.001 cm(-1).,” Appl. Opt. 30(18), 2575–2578 (1991).
[Crossref] [PubMed]

G. Durry and G. Guelachvili, “High-information time-resolved step-scan Fourier interferometer,” Appl. Opt. 34(12), 1971–1981 (1995).
[Crossref] [PubMed]

H. Zhao, Z. Ji, G. Jia, Y. Zhang, Y. Li, and D. Wang, “MWIR thermal imaging spectrometer based on the acousto-optic tunable filter,” Appl. Opt. 56(25), 7269–7276 (2017).
[Crossref] [PubMed]

Q. Yang, “Moving corner-cube mirror interferometer and reflection characteristic of corner-cube mirror,” Appl. Opt. 49(21), 4088–4095 (2010).
[Crossref] [PubMed]

Y. Ferrec, J. Taboury, H. Sauer, P. Chavel, P. Fournet, C. Coudrain, J. Deschamps, and J. Primot, “Experimental results from an airborne static Fourier transform imaging spectrometer,” Appl. Opt. 50(30), 5894–5904 (2011).
[Crossref] [PubMed]

M. Descour and E. Dereniak, “Computed-tomography imaging spectrometer: experimental calibration and reconstruction results,” Appl. Opt. 34(22), 4817–4826 (1995).
[Crossref] [PubMed]

Appl. Spectrosc. (5)

Appl. Spectrosc. Rev. (1)

J. Kauppinen, J. Heinonen, and I. Kauppinen, “Interferometers Based on the Rotational Motion,” Appl. Spectrosc. Rev. 39(1), 99–130 (2004).
[Crossref]

Chin. Opt. Lett. (1)

J. Biomed. Opt. (1)

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

J. Eur. Opt. Soc. (1)

Q. Yang and W. Wang, “Compact orthogonal-dispersion device using a prism and a transmission grating,” J. Eur. Opt. Soc. 14(1), 8 (2018).
[Crossref]

J. Mod. Opt. (1)

Q. Yang, L. Liu, and P. Lv, “Principle of a two-output-difference interferometer for removing the most important interference distortions,” J. Mod. Opt. 65(19), 2234–2242 (2018).
[Crossref]

J. Opt. (1)

K. Xu, “Monolithically integrated Si gate-controlled light-emitting device: science and properties,” J. Opt. 20(2), 024014 (2018).
[Crossref]

J. Opt. Soc. Am. A (2)

Notes Rec. R. Soc. (1)

P. B. Fellgett, “The nature and origin of multiplex Fourier spectrometry,” Notes Rec. R. Soc. 60(1), 91–93 (2006).
[Crossref]

Opt. Commun. (1)

C. Zhang, B. Xiangli, B. Zhao, and X. Yuan, “A static polarization imaging spectrometer based on a Savart polariscope,” Opt. Commun. 203(1), 21–26 (2002).
[Crossref]

Opt. Eng. (2)

N. Hagen and M. W. Kudenov, “Review of snapshot spectral imaging technologies,” Opt. Eng. 52(9), 090901 (2013).
[Crossref]

Q. Yang, “Static broadband snapshot imaging spectrometer,” Opt. Eng. 52(5), 053003 (2013).
[Crossref]

Opt. Express (13)

Y. Murakami, M. Yamaguchi, and N. Ohyama, “Hybrid-resolution multispectral imaging using color filter array,” Opt. Express 20(7), 7173–7183 (2012).
[Crossref] [PubMed]

W. Bao, Z. Ding, P. Li, Z. Chen, Y. Shen, and C. Wang, “Orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Express 22(8), 10081–10090 (2014).
[Crossref] [PubMed]

A. A. Wagadarikar, N. P. Pitsianis, X. Sun, and D. J. Brady, “Video rate spectral imaging using a coded aperture snapshot spectral imager,” Opt. Express 17(8), 6368–6388 (2009).
[Crossref] [PubMed]

Y. Murakami, K. Nakazaki, and M. Yamaguchi, “Hybrid-resolution spectral video system using low-resolution spectral sensor,” Opt. Express 22(17), 20311–20325 (2014).
[Crossref] [PubMed]

H. Rueda, D. Lau, and G. R. Arce, “Multi-spectral compressive snapshot imaging using RGB image sensors,” Opt. Express 23(9), 12207–12221 (2015).
[Crossref] [PubMed]

Q. Yang, “Broadband high-spectral-resolution ultraviolet-visible coherent-dispersion imaging spectrometer,” Opt. Express 26(16), 20777–20791 (2018).
[Crossref] [PubMed]

E. V. Chandler, C. G. Durfee, and J. A. Squier, “Integrated spectrometer design with application to multiphoton microscopy,” Opt. Express 19(1), 118–127 (2011).
[Crossref] [PubMed]

A. Barducci, D. Guzzi, C. Lastri, P. Marcoionni, V. Nardino, and I. Pippi, “Theoretical aspects of Fourier Transform Spectrometry and common path triangular interferometers,” Opt. Express 18(11), 11622–11649 (2010).
[Crossref] [PubMed]

Q. Yang, “Coherent-dispersion spectrometer for the ultraviolet and visible regions,” Opt. Express 26(10), 12372–12386 (2018).
[Crossref] [PubMed]

M. W. Kudenov and E. L. Dereniak, “Compact real-time birefringent imaging spectrometer,” Opt. Express 20(16), 17973–17986 (2012).
[Crossref] [PubMed]

S. Pacheco and R. Liang, “Snapshot, reconfigurable multispectral and multi-polarization telecentric imaging system,” Opt. Express 22(13), 16377–16385 (2014).
[Crossref] [PubMed]

P. Wang and Z. Zhang, “Double-filtering method based on two acousto-optic tunable filters for hyperspectral imaging application,” Opt. Express 24(9), 9888–9895 (2016).
[Crossref] [PubMed]

Z. Zheng, G. Yang, H. Li, and X. Liu, “Three-stage Fabry-Perot liquid crystal tunable filter with extended spectral range,” Opt. Express 19(3), 2158–2164 (2011).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

Q. Yang, B. Zhao, and D. Wen, “Principle and analysis of a moving double-sided mirror interferometer,” Opt. Laser Technol. 44(5), 1256–1260 (2012).
[Crossref]

Opt. Lett. (8)

T. Okamoto and I. Yamaguchi, “Simultaneous acquisition of spectral image information,” Opt. Lett. 16(16), 1277–1279 (1991).
[Crossref] [PubMed]

M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson, and P. D. Maker, “Demonstration of a high-speed nonscanning imaging spectrometer,” Opt. Lett. 22(16), 1271–1273 (1997).
[Crossref] [PubMed]

R. K. Chan, P. K. Lim, X. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006).
[Crossref] [PubMed]

C. M. Snively, S. Katzenberger, G. Oskarsdottir, and J. Lauterbach, “Fourier-transform infrared imaging using a rapid-scan spectrometer,” Opt. Lett. 24(24), 1841–1843 (1999).
[Crossref] [PubMed]

M. Abuleil and I. Abdulhalim, “Narrowband multispectral liquid crystal tunable filter,” Opt. Lett. 41(9), 1957–1960 (2016).
[Crossref] [PubMed]

N. Gupta and V. Voloshinov, “Hyperspectral imaging performance of a TeO2 acousto-optic tunable filter in the ultraviolet region,” Opt. Lett. 30(9), 985–987 (2005).
[Crossref] [PubMed]

A. Markman, X. Shen, and B. Javidi, “Three-dimensional object visualization and detection in low light illumination using integral imaging,” Opt. Lett. 42(16), 3068–3071 (2017).
[Crossref] [PubMed]

Y. Wu, I. O. Mirza, G. R. Arce, and D. W. Prather, “Development of a digital-micromirror-device-based multishot snapshot spectral imaging system,” Opt. Lett. 36(14), 2692–2694 (2011).
[Crossref] [PubMed]

OSA Continuum (2)

Proc. SPIE (5)

F. D. Shepherd, J. M. Mooney, T. E. Reeves, P. Dumont, M. M. Weeks, and S. DiSalvo, “Adaptive MWIR spectral imaging sensor,” Proc. SPIE 7055, 705506 (2008).
[Crossref]

L. W. Schumann and T. S. Lomheim, “Infrared hyperspectral imaging Fourier transform and dispersive spectrometers: comparison of signal-to-noise based performance [Invited],” Proc. SPIE 4480, 1–14 (2002).
[Crossref]

W. M. Porter and H. T. Enmark, “A System Overview of the Airborne Visible/Infrared Imaging Spectrometer (Aviris),” Proc. SPIE 834, 22–31 (1987).
[Crossref]

R. W. Basedow, D. C. Carmer, and M. E. Anderson, “HYDICE system: implementation and performance,” Proc. SPIE 2480, 258–267 (1995).
[Crossref]

C. L. Bennett, M. R. Carter, D. J. Fields, and J. A. M. Hernandez, “Imaging Fourier transform spectrometer,” Proc. SPIE 1937, 191–200 (1993).
[Crossref]

Remote Sens. Environ. (1)

A. F. H. Goetz, “Three decades of hyperspectral remote sensing of the Earth: a personal view,” Remote Sens. Environ. 113, S5–S16 (2009).
[Crossref]

Science (1)

A. F. H. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science 228(4704), 1147–1153 (1985).
[Crossref] [PubMed]

Other (7)

W. H. Steel, Interferometry (Cambridge University, 1983).

P. R. Griffiths and J. A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley-Interscience, 2007).

T. Okoshi, Three-Dimensional Imaging Techniques (Academic, 1976).

B. Javidi, F. Okano, and J. Y. Son, Three-Dimensional Imaging, Visualization, and Display (Springer, 2009).

M. Bass, G. Li, and E. V. Stryland, Handbook of Optics (McGraw-Hill, 2010).

J. V. Sweedler, “The use of charge transfer device detectors and spatial interferometry for analytical spectroscopy,” https://arizona.openrepository.com/handle/10150/184683 .

C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Equivalent orthographic view for the optics of the three-area-array coherent-dispersion stereo-imaging spectrometer (CDSIS). ZPD: zero path difference.
Fig. 2
Fig. 2 Equivalent light path diagram of the three-area-array CDSIS. A, B and C: area-array detectors located in the back focal plane of the collecting lens. S1, S2 and S3: entrance slits located at the front focal plane of the collimating lens (back focal plane of the objective lens).
Fig. 3
Fig. 3 Equivalent light path diagram from grating to detector for the orthographic view light.
Fig. 4
Fig. 4 Equivalent schematic diagram of the three-view stereo imaging for the CDSIS.
Fig. 5
Fig. 5 The x-axis coordinates on the detector plane of different wavelengths for the front view light, orthographic view light and back view light.
Fig. 6
Fig. 6 Several interferograms recorded simultaneously by area-array detector B in one scan period of the moving CCM for object point P i ( 0,0, Z i ) when the spectral resolution is 2 cm−1.
Fig. 7
Fig. 7 Spectrum obtained from Fourier transform of the three interferograms in Fig. 6 and its distribution in a given column of area-array detector B.
Fig. 8
Fig. 8 The detailed Spectrum obtained from Fourier transform of the three interferograms in Fig. 6.

Tables (4)

Tables Icon

Table 1 Comparisons of the CDSIS, the CDIS in [50], the CDS in [59], and the UVS in [60]

Tables Icon

Table 2 Comparisons of the CDSIS, interferometric, dispersive, and color filter imaging spectrometers

Tables Icon

Table 3 Comparisons of the CDSIS, the BSIS in [46], the IBSIS in [47], and the device in [72]

Tables Icon

Table 4 Wavelength difference versus Wavenumber difference for several wavelengths

Equations (50)

Equations on this page are rendered with MathJax. Learn more.

tanθ= y f ,
tanη= y f 1 = y f 2 .
tan ϕ 0 = x A x B f = x A f ,
tanρ= x A x B f 1 = x A f 1 = f f 1 tan ϕ 0 .
m λ i =g[ n( λ i )sinα+sin θ m ( λ i ) ].
λ 1 =g[ n( λ 1 )sinψ+sin θ 1 ( λ 1 ) ],
λ o =g[ n( λ o )sinψ+sin θ 1 ( λ o ) ],
λ k =g[ n( λ k )sinψ+sin θ 1 ( λ k ) ],
tanβ( λ 1 )=tan[ θ 1 ( λ o ) θ 1 ( λ 1 ) ]= x B1 f 2 ,
tanβ( λ k )=tan[ θ 1 ( λ k ) θ 1 ( λ o ) ]= x Bk f 2 .
x B1 = f 2 τ( λ o ) 1 τ 2 ( λ 1 ) τ( λ 1 ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 τ 2 ( λ 1 ) +τ( λ o )τ( λ 1 ) ,
x Bk = f 2 τ( λ o ) 1 τ 2 ( λ k ) τ( λ k ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 τ 2 ( λ k ) +τ( λ o )τ( λ k ) ,
τ( λ )= λ g n( λ )sinψ.
x A1 = f 2 τ( λ o ) 1 ς 2 ( λ 1 ) ς( λ 1 ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ς 2 ( λ 1 ) +τ( λ o )ς( λ 1 ) ,
x Ao = f 2 τ( λ o ) 1 ς 2 ( λ o ) ς( λ o ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ς 2 ( λ o ) +τ( λ o )ς( λ o ) ,
x Ak = f 2 τ( λ o ) 1 ς 2 ( λ k ) ς( λ k ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ς 2 ( λ k ) +τ( λ o )ς( λ k ) ,
ς( λ )= λ g n( λ )sin( ψρ )= λ g n( λ )sin( ψarctan x A f 1 ).
x C1 = f 2 τ( λ o ) 1 ξ 2 ( λ 1 ) ξ( λ 1 ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ξ 2 ( λ 1 ) +τ( λ o )ξ( λ 1 ) ,
x Co = f 2 τ( λ o ) 1 ξ 2 ( λ o ) ξ( λ o ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ξ 2 ( λ o ) +τ( λ o )ξ( λ o ) ,
x Ck = f 2 τ( λ o ) 1 ξ 2 ( λ k ) ξ( λ k ) 1 τ 2 ( λ o ) 1 τ 2 ( λ o ) 1 ξ 2 ( λ k ) +τ( λ o )ξ( λ k ) ,
ξ( λ )= λ g n( λ )sin( ψ+ρ )= λ g n( λ )sin( ψ+arctan x A f 1 ).
y= f 2 f 1 y .
tanθ= Y H = y f ,
tan ϕ 0 = d H = x A f .
[ cos ϕ 0 0 sin ϕ 0 0 1 0 sin ϕ 0 0 cos ϕ 0 ][ 0 y f ]=[ fsin ϕ 0 y fcos ϕ 0 ]=γ R T [ X X S Y Y S Z Z S ].
R=[ a 1 a 2 a 3 b 1 b 2 b 3 c 1 c 2 c 3 ],
a 1 =cosφcosκsinφsinωsinκ a 2 =cosφsinκsinφsinωcosκ a 3 =sinφcosω b 1 =cosωsinκ b 2 =cosωcosκ b 3 =sinω c 1 =sinφcosκ+cosφsinωsinκ c 2 =sinφsinκ+cosφsinωcosκ c 3 =cosφcosω }.
x =f a 1 ( X X S )+ b 1 ( Y Y S )+ c 1 ( Z Z S ) a 3 ( X X S )+ b 3 ( Y Y S )+ c 3 ( Z Z S ) ,
y =f a 2 ( X X S )+ b 2 ( Y Y S )+ c 2 ( Z Z S ) a 3 ( X X S )+ b 3 ( Y Y S )+ c 3 ( Z Z S ) ,
X=[ a 1 x + a 2 y a 3 f c 1 x + c 2 y c 3 f ]( Z Z S )+ X S ,
Y=[ b 1 x + b 2 y b 3 f c 1 x + c 2 y c 3 f ]( Z Z S )+ Y S .
GSD= Hb f 1 f f 2 ,
FOV Y =2arctan( θ max )=2arctan( Nb f 1 2f f 2 . ),
W=NGSD= HNb f 1 f f 2 ,
L S = Nb f 1 f 2 .
ΔZ=k× GSD 2d/H .
M B | x B1 x Bk |/b .
M A | x A1 x Ak |/b .
M C | x C1 x Ck |/b .
OPD B ( l,y )= 2l cosη =2l 1+ tan 2 η =2l 1+ ( y f 2 ) 2 .
I B ( l,y )= 0 B( σ )[ 1+cos( 4πσl 1+ ( y f 2 ) 2 ) ]dσ .
OPD A ( l,y )=2 ( l cosρ ) 2 + ( ltanη ) 2 =2l 1+ ( f f 1 tan ϕ 0 ) 2 + ( y f 2 ) 2 .
I A ( l,y )= 0 B( σ )[ 1+cos( 4πσl 1+ ( f f 1 tan ϕ 0 ) 2 + ( y f 2 ) 2 ) ]dσ .
δ σ B = 1 2 OPD Bmax ( l,0 ) = 1 4 l max .
δ σ B = 1 2 l max .
δ σ A = 1 2 OPD Amax ( l,0 ) = f 1 4 l max f 1 2 + ( ftan ϕ 0 ) 2 .
δ σ A = f 1 2 l max f 1 2 + ( ftan ϕ 0 ) 2 .
K B ( y )= OPD Bmax ( l,y ) χ =4 σ max l max 1+ ( y f 2 ) 2 ,
K A ( y )= OPD Amax ( l,y ) χ =4 σ max l max 1+ ( f f 1 tan ϕ 0 ) 2 + ( y f 2 ) 2 .
n 2 =1+ 0.6961663 λ 2 λ 2 0.0684043 2 + 0.4079426 λ 2 λ 2 0.1162414 2 + 0.8974794 λ 2 λ 2 9.896161 2 .

Metrics