Abstract

We consider a highly anisotropic metamaterial structure, composed of parallel metal nanostripes, and show that a thin layer of the material can be used as a tunable partial polarizer. The transmittance of the structure for TE-polarized waves depends strongly on the incidence angle, while for TM-polarized waves, it stays high and essentially constant. In particular, using the structure, the degree of polarization of a partially polarized or unpolarized light can be tuned by changing the incidence angle. The TE-wave transmittance drops from, c.a., 1 to 0 when the incidence angle increases by 5 deg only, owing to the presence of an unusual higher-order odd-symmetric TM mode that we have revealed in the structure. The tuning can be made smoother by introducing another layer of a similar metal-nanostripe structure on top of the first one. The new design allows the TE-wave transmittance to decrease gradually towards 0 with the incidence angle increasing from 0 to about 30 deg. Our structures serve as an essential optical component for studies involving partially polarized light.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure

Yi Wang, Zhuangqi Cao, Honggen Li, Qishun Shen, Wen Yuan, and Pingping Xiao
Opt. Express 17(16) 13309-13314 (2009)

Effect of incident angle and polarization on electrically-tunable defect mode in anisotropic photonic crystals

Kazem Jamshidi-Ghaleh and Behnam Kazempour
Appl. Opt. 55(16) 4350-4356 (2016)

Polarization modulation by tunable electromagnetic metamaterial reflector/absorber

Bo Zhu, Yijun Feng, Junming Zhao, Ci Huang, Zhengbin Wang, and Tian Jiang
Opt. Express 18(22) 23196-23203 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, European Chemistry Series (McGraw-Hill, 1994).
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series (Wiley, 2008).
  3. B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007).
  4. G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002).
    [Crossref] [PubMed]
  5. J. S. Tyo, D. L. Goldstein, D. B. Chenault, and J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006).
    [Crossref] [PubMed]
  6. K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
    [Crossref]
  7. T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Transactions Royal Soc. B: Biol. Sci. 366, 619–626 (2011).
    [Crossref]
  8. S. Trippe, “Polarization and polarimetry: a review,” J. Korean Astron. Soc. 47, 15–39 (2014).
    [Crossref]
  9. D. E. Aspnes, “Photometric ellipsometer for measuring partially polarized light,” J. Opt. Soc. Am. 65, 1274–1278 (1975).
    [Crossref]
  10. R. M. A. Azzam, “Stokes-vector and mueller-matrix polarimetry,” J. Opt. Soc. Am. A 33, 1396–1408 (2016).
    [Crossref]
  11. N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. B. Mueller, R. C. Devlin, K. Leósson, and F. Capasso, “Polarization state generation and measurement with a single metasurface,” Opt. Express 26, 21455–21478 (2018).
    [Crossref] [PubMed]
  12. W. H. Carter and E. Wolf, “Degree of polarization and intensity fluctuations in thermal light beams,” J. Opt. Soc. Am. 63, 1619–1620 (1973).
    [Crossref]
  13. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
    [Crossref]
  14. A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
    [Crossref]
  15. T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
    [Crossref]
  16. A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, “Polarization time of unpolarized light,” Optica 4, 64–70 (2017).
    [Crossref]
  17. A. P. Loeber, “Depolarization of white light by a birefringent crystal. ii. the lyot depolarizer,” J. Opt. Soc. Am. 72, 650–656 (1982).
    [Crossref]
  18. J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
    [Crossref]
  19. J. C. G. de Sande, M. Santarsiero, G. Piquero, and F. Gori, “Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer,” Opt. Express 20, 27348–27360 (2012).
    [Crossref] [PubMed]
  20. A. S. Ostrovsky, G. R. Zurita, C. M. Fabián, M. A. O. Santamaría, and C. R. Parrao, “Experimental generating the partially coherent and partially polarized electromagnetic source,” Opt. Express 18, 12864–12871 (2010).
    [Crossref] [PubMed]
  21. J. J. Wang, W. Zhang, X. Deng, J. Deng, F. Liu, P. Sciortino, and L. Chen, “High-performance nanowire-grid polarizers,” Opt. Lett. 30, 195–197 (2005).
    [Crossref] [PubMed]
  22. Z. Yang and Y. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510–9519 (2007).
    [Crossref] [PubMed]
  23. J. W. Yoon, K. J. Lee, and R. Magnusson, “Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers,” Opt. Express 23, 28849–28856 (2015).
    [Crossref] [PubMed]
  24. E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instruments 69, 1574–1580 (1998).
    [Crossref]
  25. Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
    [Crossref]
  26. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
    [Crossref]
  27. M. Nyman, S. Maurya, M. Kaivola, and A. Shevchenko, “Optical wave retarder based on metal-nanostripe metamaterial,” Opt. Lett. 44, 3102–3105 (2019).
    [Crossref] [PubMed]
  28. S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
    [Crossref]
  29. S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
    [Crossref]
  30. B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
    [Crossref]
  31. D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
    [Crossref]
  32. H. Kurosawa, B. Choi, Y. Sugimoto, and M. Iwanaga, “High-performance metasurface polarizers with extinction ratios exceeding 12000,” Opt. Express 25, 4446–4455 (2017).
    [Crossref] [PubMed]
  33. Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17, 2871–2879 (2009).
    [Crossref] [PubMed]
  34. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  35. V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
    [Crossref]

2019 (2)

M. Nyman, S. Maurya, M. Kaivola, and A. Shevchenko, “Optical wave retarder based on metal-nanostripe metamaterial,” Opt. Lett. 44, 3102–3105 (2019).
[Crossref] [PubMed]

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

2018 (3)

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

N. A. Rubin, A. Zaidi, M. Juhl, R. P. Li, J. B. Mueller, R. C. Devlin, K. Leósson, and F. Capasso, “Polarization state generation and measurement with a single metasurface,” Opt. Express 26, 21455–21478 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (1)

2015 (2)

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

J. W. Yoon, K. J. Lee, and R. Magnusson, “Ultra-sparse dielectric nanowire grids as wideband reflectors and polarizers,” Opt. Express 23, 28849–28856 (2015).
[Crossref] [PubMed]

2014 (2)

B. Shen, P. Wang, R. Polson, and R. Menon, “Ultra-high-efficiency metamaterial polarizer,” Optica 1, 356–360 (2014).
[Crossref]

S. Trippe, “Polarization and polarimetry: a review,” J. Korean Astron. Soc. 47, 15–39 (2014).
[Crossref]

2013 (1)

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

2012 (3)

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

J. C. G. de Sande, M. Santarsiero, G. Piquero, and F. Gori, “Longitudinal polarization periodicity of unpolarized light passing through a double wedge depolarizer,” Opt. Express 20, 27348–27360 (2012).
[Crossref] [PubMed]

2011 (1)

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Transactions Royal Soc. B: Biol. Sci. 366, 619–626 (2011).
[Crossref]

2010 (2)

A. S. Ostrovsky, G. R. Zurita, C. M. Fabián, M. A. O. Santamaría, and C. R. Parrao, “Experimental generating the partially coherent and partially polarized electromagnetic source,” Opt. Express 18, 12864–12871 (2010).
[Crossref] [PubMed]

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

2009 (2)

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

Y. Pang and R. Gordon, “Metal nano-grid reflective wave plate,” Opt. Express 17, 2871–2879 (2009).
[Crossref] [PubMed]

2008 (1)

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

2002 (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002).
[Crossref] [PubMed]

1999 (1)

J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
[Crossref]

1998 (1)

E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instruments 69, 1574–1580 (1998).
[Crossref]

1982 (1)

1975 (1)

1973 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Andryieuski, A.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

Arbabi, A.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

Arbabi, E.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

Aspnes, D. E.

Azzam, R. M. A.

Banwell, C. N.

C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, European Chemistry Series (McGraw-Hill, 1994).

Bludov, Y. V.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
[Crossref]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series (Wiley, 2008).

Capasso, F.

Carter, W. H.

Chen, L.

Chenault, D. B.

Choi, B.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Compain, E.

E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instruments 69, 1574–1580 (1998).
[Crossref]

Costelloe, J. R.

J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
[Crossref]

Cronin, T. W.

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Transactions Royal Soc. B: Biol. Sci. 366, 619–626 (2011).
[Crossref]

de Sande, J. C. G.

Deng, J.

Deng, X.

Devlin, R. C.

Drevillon, B.

E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instruments 69, 1574–1580 (1998).
[Crossref]

Fabián, C. M.

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

Faraon, A.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

Friberg, A. T.

A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, “Polarization time of unpolarized light,” Optica 4, 64–70 (2017).
[Crossref]

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

Gao, J.

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

Goldstein, D. L.

Gordon, R.

Gori, F.

Grahn, P.

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

Hong, J.

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series (Wiley, 2008).

Iwanaga, M.

Jin, D.

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Juhl, M.

Kaivola, M.

M. Nyman, S. Maurya, M. Kaivola, and A. Shevchenko, “Optical wave retarder based on metal-nanostripe metamaterial,” Opt. Lett. 44, 3102–3105 (2019).
[Crossref] [PubMed]

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

Kamali, S. M.

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

Karrila, A.

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

Kivijärvi, V.

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

Kurosawa, H.

Lavrinenko, A. V.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

Lee, B.

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

Lee, K. J.

Leósson, K.

Li, R. P.

Liu, F.

Loeber, A. P.

Lu, Y.

Magnusson, R.

Malureanu, R.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

Markovich, D. L.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

Marshall, J.

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Transactions Royal Soc. B: Biol. Sci. 366, 619–626 (2011).
[Crossref]

Maurya, S.

McCash, E. M.

C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, European Chemistry Series (McGraw-Hill, 1994).

Menon, R.

Mueller, J. B.

Mun, S.-E.

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

Nyman, M.

M. Nyman, S. Maurya, M. Kaivola, and A. Shevchenko, “Optical wave retarder based on metal-nanostripe metamaterial,” Opt. Lett. 44, 3102–3105 (2019).
[Crossref] [PubMed]

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

Ostrovsky, A. S.

Pang, Y.

Parrao, C. R.

Peres, N. M. R.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

Piquero, G.

Polson, R.

Roussey, M.

Roy, R.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002).
[Crossref] [PubMed]

Rubin, N. A.

Saleh, B.

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007).

Santamaría, M. A. O.

Santarsiero, M.

Sciortino, P.

Setälä, T.

A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, “Polarization time of unpolarized light,” Optica 4, 64–70 (2017).
[Crossref]

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

Shaw, J. A.

Shen, B.

Shevchenko, A.

M. Nyman, S. Maurya, M. Kaivola, and A. Shevchenko, “Optical wave retarder based on metal-nanostripe metamaterial,” Opt. Lett. 44, 3102–3105 (2019).
[Crossref] [PubMed]

A. Shevchenko, M. Roussey, A. T. Friberg, and T. Setälä, “Polarization time of unpolarized light,” Optica 4, 64–70 (2017).
[Crossref]

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

Stolen, R. H.

J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
[Crossref]

Sugimoto, Y.

Teich, M.

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007).

Trippe, S.

S. Trippe, “Polarization and polarimetry: a review,” J. Korean Astron. Soc. 47, 15–39 (2014).
[Crossref]

Tyo, J. S.

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002).
[Crossref] [PubMed]

Vasilevskiy, M. I.

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
[Crossref]

Voipio, T.

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

Wang, J. J.

Wang, J. S.

J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
[Crossref]

Wang, P.

Wolf, E.

Xi, P.

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

Yang, Z.

Yoon, J. W.

Yun, J.-G.

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

Zaidi, A.

Zalkovskij, M.

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

Zhang, W.

Zhang, X.

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

Zhanghao, K.

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

Zurita, G. R.

Appl. Opt. (1)

Appl. Phys. B (1)

D. L. Markovich, A. Andryieuski, M. Zalkovskij, R. Malureanu, and A. V. Lavrinenko, “Metamaterial polarization converter analysis: limits of performance,” Appl. Phys. B 112, 143–152 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. S. Wang, J. R. Costelloe, and R. H. Stolen, “Reduction of the degree of polarization of a laser diode with a fiber lyot depolarizer,” IEEE Photonics Technol. Lett. 11, 1449–1451 (1999).
[Crossref]

J. Appl. Phys. (1)

Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, “Tunable graphene-based polarizer,” J. Appl. Phys. 112, 084320 (2012).
[Crossref]

J. Innov. Opt. Heal. Sci. (1)

K. Zhanghao, J. Gao, D. Jin, X. Zhang, and P. Xi, “Super-resolution fluorescence polarization microscopy,” J. Innov. Opt. Heal. Sci. 11, 1730002 (2018).
[Crossref]

J. Korean Astron. Soc. (1)

S. Trippe, “Polarization and polarimetry: a review,” J. Korean Astron. Soc. 47, 15–39 (2014).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

Nanophotonics (1)

S. M. Kamali, E. Arbabi, A. Arbabi, and A. Faraon, “A review of dielectric optical metasurfaces for wavefront control,” Nanophotonics 7, 1041–1068 (2018).
[Crossref]

New J. Phys. (2)

V. Kivijärvi, M. Nyman, A. Karrila, P. Grahn, A. Shevchenko, and M. Kaivola, “Interaction of metamaterials with optical beams,” New J. Phys. 17, 063019 (2015).
[Crossref]

A. Shevchenko, T. Setälä, M. Kaivola, and A. T. Friberg, “Characterization of polarization fluctuations in random electromagnetic beams,” New J. Phys. 11, 073004 (2009).
[Crossref]

Opt. Express (7)

Opt. Lett. (2)

Optica (2)

Philos. Transactions Royal Soc. B: Biol. Sci. (1)

T. W. Cronin and J. Marshall, “Patterns and properties of polarized light in air and water,” Philos. Transactions Royal Soc. B: Biol. Sci. 366, 619–626 (2011).
[Crossref]

Phys. Rev. A (2)

T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010).
[Crossref]

T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Polarization time and length for random optical beams,” Phys. Rev. A 78, 033817 (2008).
[Crossref]

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86, 195408 (2012).
[Crossref]

Phys. Rev. Lett. (1)

G. D. VanWiggeren and R. Roy, “Communication with dynamically fluctuating states of light polarization,” Phys. Rev. Lett. 88, 097903 (2002).
[Crossref] [PubMed]

Rev. Sci. Instruments (1)

E. Compain and B. Drevillon, “High-frequency modulation of the four states of polarization of light with a single phase modulator,” Rev. Sci. Instruments 69, 1574–1580 (1998).
[Crossref]

Sci. Reports (1)

S.-E. Mun, J. Hong, J.-G. Yun, and B. Lee, “Broadband circular polarizer for randomly polarized light in few-layer metasurface,” Sci. Reports 9, 2543 (2019).
[Crossref]

Other (3)

C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy, European Chemistry Series (McGraw-Hill, 1994).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Science Series (Wiley, 2008).

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of a layer of an anisotropic metamaterial composed of silver nanostripes in a dielectric medium. The width and separation distance of the nanostripes are w and d, respectively. The thickness of the metamaterial layer given by the height of the nanostripes is h.
Fig. 2
Fig. 2 Electric field profiles in the XZ plane of the structure for the incident TE- and TM-polarized waves for a 1.53 μm tall and 90 nm wide metal nanostripes: (a) shows the y-component of the excited TE mode in the structure when a TE-polarizedplane wave is incident on it at normal incidence, (b) shows the x-component of the excited OTM mode when a TE-polarized wave is incident at an angle of 5 deg, and (c) shows the x-component of the excited TM mode for a TM-polarized incident wave at normalincidence.
Fig. 3
Fig. 3 The transmittance (T) of the designed metamaterial slab as a function of the incidence angle θ in glass and θair in air. The results of semianalytical calculations are shown by solid lines and those of purely numerical calculations by dashed lines and circles. The green curve shows the degree of polarization (DOP) of an initially unpolarized wave transmitted by the device. The dimensions of the structure are h = 200 nm and d = 310 nm. The width of the metal nanostripes is w = 90 nm in (a) and w = 30 nm in (b).
Fig. 4
Fig. 4 A bi-layered metamaterial structure. The center-to-center separation of the layers is t. Each layer is composed of an array of silver nanostripes of height h and width w. The period of the structure is Λ. The incident wavevector lies in the XZ plane and makes an angle θ with the z-axis.
Fig. 5
Fig. 5 Dependence of the reflectance of a single metamaterial layer with Λ = 200 nm for normally incident (a) TE-polarized and (b) TM-polarized waves on parameters h and w. The transmittance of the bi-layered metamaterial (h = 100 nmand w = 40 nm) for the incident TE-polarized and TM-polarized waves is shown by the blue and red lines, respectively, in (c) as a function of size t and in (d) as a function of the incidence angle at t = 740 nm. The degree of polarization (DOP) of originally unpolarized light transmitted by the device is shown by the green curve in (d).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

p = I polarized I total .
p = | I x I y | I x + I y .
tan  ( 1 2 k 0 d ϵ d n TE 2 ) tan  ( 1 2 k 0 w ϵ m n TE 2 ) = ϵ m n TE 2 ϵ d n TE 2 ,
tan  ( 1 2 k 0 d ϵ d n TM 2 ) tan  ( 1 2 k 0 w ϵ m n TM 2 ) = ϵ d ϵ m n TM 2 ϵ m ϵ d n TM 2 .
tan  ( 1 2 k 0 d ϵ d n OTM 2 ) tan  ( 1 2 k 0 w ϵ m n OTM 2 ) = ϵ m ϵ d n OTM 2 ϵ d ϵ m m n OTM 2 .
r ^ = ( r TE TE r TE OTM r OTM TE r OTM OTM ) ,
t ^ = ( t TE t OTM a b ) ,
E i = ( E i 0 ) .
r ^ i = ( r TE 0 0 r OTM ) ,
t ^ i = ( t TE c t OTM d ) ,
E t = ( E t , TE E t , OTM ) ,
E t = t ^ [ I p ^ r ^ p ^ r ^ ] 1 p ^ t ^ i E i .
p ^ = ( exp ( i h k z , TE ) 0 0 exp ( i h k z , OTM ) ) .
T TE = | E t , TE E i | 2 .

Metrics