Abstract

Mode-locked InAs/InGaAs quantum dot lasers emitting optical frequency combs centered at 1310 nm are promising sources for high-speed and high-capacity communication applications. We report on the stable optical pulse train generation by a monolithic passively mode-locked edge-emitting two-section quantum dot laser based on a five-stack InAs/InGaAs dots-in-a-well structure directly grown on an on-axis (001) silicon substrate by solid-source molecular beam epitaxy. Optical pulses as short as 1.7 ps at a pulse repetition rate or inter-mode beat frequency of 9.4 GHz are obtained. A minimum pulse-to-pulse timing jitter of 9 fs, corresponding to a repetition rate line width of 400 Hz, is demonstrated. The generated optical frequency combs yield exceptional low amplitude jitter performance and comb widths exceed 5.5 nm at a −3 dB criteria, containing more than 100 comb carriers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Experimental investigation of different regimes of mode-locking in a high repetition rate passively mode-locked semiconductor quantum-dot laser

Fabien Kéfélian, Shane O’Donoghue, Maria Teresa Todaro, John McInerney, and Guillaume Huyet
Opt. Express 17(8) 6258-6267 (2009)

Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser

Chang-Yi Lin, Frederic Grillot, Yan Li, Ravi Raghunathan, and Luke F. Lester
Opt. Express 18(21) 21932-21937 (2010)

Dual-wavelength passive and hybrid mode-locking of 3, 4.5 and 10 GHz InAs/InP(100) quantum dot lasers

M.S. Tahvili, L. Du, M.J.R. Heck, R. Nötzel, M.K. Smit, and E.A.J.M. Bente
Opt. Express 20(7) 8117-8135 (2012)

References

  • View by:
  • |
  • |
  • |

  1. S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
    [Crossref]
  2. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
    [Crossref]
  3. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
    [Crossref]
  4. R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
    [Crossref]
  5. S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).
  6. A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
    [Crossref]
  7. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  8. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
    [Crossref]
  9. D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
    [Crossref]
  10. D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
    [Crossref]
  11. J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
    [Crossref]
  12. Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
    [Crossref]
  13. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  14. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  15. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref]
  16. L. V. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
    [Crossref]
  17. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
    [Crossref]
  18. W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
    [Crossref]
  19. P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
    [Crossref]
  20. J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
    [Crossref]
  21. D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
    [Crossref]
  22. E. Rafailov, M. Cataluna, and E. A. Avrutin, Quantum Dot Saturable Absorbers (John Wiley & Sons, Ltd, 2011), Chap. 4, pp. 77–97.
  23. D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
    [Crossref]
  24. O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
    [Crossref]
  25. H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
    [Crossref]
  26. D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
    [Crossref]
  27. Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
    [Crossref]
  28. Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
    [Crossref]
  29. K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 $\mu$μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
    [Crossref]
  30. T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
    [Crossref]
  31. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
    [Crossref]
  32. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
    [Crossref]
  33. Y. Cheng, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, Y. Cao, X. Hu, X. Li, P. H. Lim, and Q. J. Wang, “Passively mode-locked III-V/silicon laser with continuous-wave optical injection,” Opt. Express 23(5), 6392–6399 (2015).
    [Crossref]
  34. M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
    [Crossref]
  35. S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
    [Crossref]
  36. S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
    [Crossref]
  37. M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
    [Crossref]
  38. E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [Crossref]
  39. S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
    [Crossref]
  40. C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010).
    [Crossref]
  41. L. Drzewietzki, S. Breuer, and W. Elsäßer, “Timing jitter reduction of passively mode-locked semiconductor lasers by self- and external-injection: Numerical description and experiments,” Opt. Express 21(13), 16142–16161 (2013).
    [Crossref]
  42. C. Weber, L. Drzewietzki, M. Rossetti, T. Xu, P. Bardella, H. Simos, C. Mesaritakis, M. Ruiz, I. Krestnikov, D. Livshits, M. Krakowski, D. Syvridis, I. Montrosset, E. U. Rafailov, W. Elsaßer, and S. Breuer, “Picosecond pulse amplification up to a peak power of 42 W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 $\mu$μm,” Opt. Lett. 40(3), 395–398 (2015).
    [Crossref]
  43. F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
    [Crossref]
  44. G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
    [Crossref]
  45. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
    [Crossref]
  46. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Lasers Opt. 39(4), 201–217 (1986).
    [Crossref]
  47. C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
    [Crossref]
  48. M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. 36(6B), 4181–4187 (1997).
    [Crossref]
  49. L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
    [Crossref]
  50. H. Weber, “Comments on the pulse width measurement with two-photon excitation of fluorescence,” Phys. Lett. A 27(5), 321–322 (1968).
    [Crossref]
  51. P. Bardella, L. Drzewietzki, M. Krakowski, I. Krestnikov, and S. Breuer, “Mode locking in a tapered two-section quantum dot laser: design and experiment,” Opt. Lett. 43(12), 2827–2830 (2018).
    [Crossref]

2019 (5)

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

2018 (6)

C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
[Crossref]

P. Bardella, L. Drzewietzki, M. Krakowski, I. Krestnikov, and S. Breuer, “Mode locking in a tapered two-section quantum dot laser: design and experiment,” Opt. Lett. 43(12), 2827–2830 (2018).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
[Crossref]

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

2017 (3)

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

2015 (4)

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Y. Cheng, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, Y. Cao, X. Hu, X. Li, P. H. Lim, and Q. J. Wang, “Passively mode-locked III-V/silicon laser with continuous-wave optical injection,” Opt. Express 23(5), 6392–6399 (2015).
[Crossref]

C. Weber, L. Drzewietzki, M. Rossetti, T. Xu, P. Bardella, H. Simos, C. Mesaritakis, M. Ruiz, I. Krestnikov, D. Livshits, M. Krakowski, D. Syvridis, I. Montrosset, E. U. Rafailov, W. Elsaßer, and S. Breuer, “Picosecond pulse amplification up to a peak power of 42 W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 $\mu$μm,” Opt. Lett. 40(3), 395–398 (2015).
[Crossref]

2014 (1)

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

2013 (1)

2011 (1)

2010 (6)

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 $\mu$μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref]

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010).
[Crossref]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
[Crossref]

2009 (2)

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

2008 (2)

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

2007 (4)

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[Crossref]

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

2006 (5)

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

2005 (2)

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

2004 (1)

2002 (1)

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

1998 (1)

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

1997 (1)

M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. 36(6B), 4181–4187 (1997).
[Crossref]

1996 (1)

L. V. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Lasers Opt. 39(4), 201–217 (1986).
[Crossref]

1968 (1)

H. Weber, “Comments on the pulse width measurement with two-photon excitation of fluorescence,” Phys. Lett. A 27(5), 321–322 (1968).
[Crossref]

Abbasi, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Akulova, Y.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Arakawa, Y.

Arsenijevic, D.

Asryan, L. V.

L. V. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[Crossref]

Avrutin, E. A.

E. Rafailov, M. Cataluna, and E. A. Avrutin, Quantum Dot Saturable Absorbers (John Wiley & Sons, Ltd, 2011), Chap. 4, pp. 77–97.

Baets, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Bardella, P.

Bauwelinck, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Bernhardt, B.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bhattacharya, P.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

Bienstman, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Bimberg, D.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
[Crossref]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[Crossref]

M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. 36(6B), 4181–4187 (1997).
[Crossref]

Bogaerts, W.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Bordel, D.

Borri, P.

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

Bowers, J.

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

Boyraz, O.

Breuer, S.

Buckwalter, J.

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

Campenhout, J. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Cao, Y.

Carpintero, G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

Cataluna, M.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

E. Rafailov, M. Cataluna, and E. A. Avrutin, Quantum Dot Saturable Absorbers (John Wiley & Sons, Ltd, 2011), Chap. 4, pp. 77–97.

Chen, S.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Cheng, Y.

Chow, W. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

Chrostowski, L.

Clausen, A. T.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Cohen, O.

Dave, U.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Dave, U. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Davenport, M. L.

M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
[Crossref]

De Groote, A.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Dhakal, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Dorpe, P. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Doussiere, P.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Driscoll, J. B.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Drzewietzki, L.

Elliott, S.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Elsaßer, W.

Elsäßer, W.

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Fang, A. W.

Fathpour, S.

Fiol, G.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
[Crossref]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Flueckiger, J.

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Galili, M.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Gossard, A. C

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

Gossard, A. C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

Grillot, F.

Groote, A. D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Grundmann, M.

M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. 36(6B), 4181–4187 (1997).
[Crossref]

Guelachvili, G.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Guimard, D.

Hak, D.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Hansch, T. W.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Harris, L.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

Helkey, R.

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

Hens, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Herrick, R. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

Hill, G.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

Holzwarth, R.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hopkinson, M.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

Hu, X.

Huffaker, D. L.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

Huyet, G.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Iwamoto, S.

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jalali, B.

Jeppesen, P.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Jhoja, J.

Jones, R.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Jung, D.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Kefelian, F.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Kennedy, M.

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

Kennedy, M. J.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Klehr, A.

C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
[Crossref]

Klein, J.

Knigge, A.

C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Koch, B. R.

Komljenovic, T.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Kovsh, A.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Krakowski, M.

Krestnikov, I.

Kumari, S.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Kunert, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Kuntz, M.

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[Crossref]

Kuyken, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Laemmlin, M.

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[Crossref]

Lammlin, M.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Langbein, W.

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

Ledentsov, N.

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Lee, A.

Leo, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Lester, L. F.

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010).
[Crossref]

Li, X.

Li, Y.

Liang, D.

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Lim, P. H.

Lin, C.-Y.

Lin, W.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Lingnau, B.

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

Liow, T.-Y.

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Liu, A.

Liu, A. Y.

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

Liu, H.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liu, S.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
[Crossref]

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

Livshits, D.

Lo, G.-Q.

Lu, Z.

Ludge, K.

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

Luo, X.

Malik, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Martens, D.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Matthews, D. R.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

McInerney, J. G.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Mee, J. K.

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

Meinecke, S.

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

Merckling, C.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Mesaritakis, C.

Meuer, C.

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
[Crossref]

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Mi, Z.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

Montrosset, I.

Mork, J.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Morthier, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Mowbray, D. J.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

Mulvad, H. C. H.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Muneeb, M.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Norman, J.

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Norman, J. C.

S. Liu, X. Wu, D. Jung, J. C. Norman, M. J. Kennedy, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity,” Optica 6(2), 128–134 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

O’Donoghue, S.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Oxenlowe, L. K.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Paniccia, M.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Paniccia, M. J.

Pantouvaki, M.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Park, H.

Pathak, S.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Penty, R. V.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Peyskens, F.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Picqué, N.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Pond, J.

Pozzi, F.

Rae, A. R.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Rafailov, E.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

E. Rafailov, M. Cataluna, and E. A. Avrutin, Quantum Dot Saturable Absorbers (John Wiley & Sons, Ltd, 2011), Chap. 4, pp. 77–97.

Rafailov, E. U.

Raghunathan, R.

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010).
[Crossref]

Roelkens, G.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Rong, H.

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

Ross, I.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Rossetti, M.

Ruiz, M.

Ruocco, A.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Ryckeboer, E.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Saleh, A. A. M.

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Schmeckebier, H.

Schneider, S.

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

Seeds, A.

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Shang, C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Shi, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Shutts, S.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Sibbett, W.

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Simos, H.

Skolnick, M. S.

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

Smowton, P.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Smowton, P. M.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

Sobiesierski, A.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Song, J.

Subramanian, A. Z.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Summers, H. D.

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

Suris, R.

L. V. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[Crossref]

Syvridis, D.

Tanabe, K.

Tang, M.

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

Thomas, N. L.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Thompson, M. G.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Thourhout, D. V.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Tian, B.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Todaro, M. T.

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

Tsang, H. K.

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Udem, T.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Van Campenhout, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Van Gasse, K.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Van Thourhout, D.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Verbist, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Lasers Opt. 39(4), 201–217 (1986).
[Crossref]

Wan, Y.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

Wang, Q. J.

Wang, R.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Wang, T.

Wang, X.

Wang, Z.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Weber, C.

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
[Crossref]

C. Weber, L. Drzewietzki, M. Rossetti, T. Xu, P. Bardella, H. Simos, C. Mesaritakis, M. Ruiz, I. Krestnikov, D. Livshits, M. Krakowski, D. Syvridis, I. Montrosset, E. U. Rafailov, W. Elsaßer, and S. Breuer, “Picosecond pulse amplification up to a peak power of 42 W by a quantum-dot tapered optical amplifier and a mode-locked laser emitting at 1.26 $\mu$μm,” Opt. Lett. 40(3), 395–398 (2015).
[Crossref]

Weber, H.

H. Weber, “Comments on the pulse width measurement with two-photon excitation of fluorescence,” Phys. Lett. A 27(5), 321–322 (1968).
[Crossref]

White, I. H.

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Wright, J. B.

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

Wu, X.

Wuytens, P.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Xia, M.

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

Xie, W.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Xu, T.

Yang, J.

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

Yin, X.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Yu, H.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

Zhang, J.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Zhang, Z.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

Zhao, H.

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

Zhu, Y.

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

Zibar, D.

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

APL Photonics (1)

J. C. Norman, D. Jung, Y. Wan, and J. E. Bowers, “Perspective: The future of quantum dot photonic integrated circuits,” APL Photonics 3(3), 030901 (2018).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B: Lasers Opt. 39(4), 201–217 (1986).
[Crossref]

Appl. Phys. Lett. (5)

L. Harris, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, and G. Hill, “Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers,” Appl. Phys. Lett. 73(7), 969–971 (1998).
[Crossref]

W. W. Chow, A. Y. Liu, A. C. Gossard, and J. E. Bowers, “Extraction of inhomogeneous broadening and nonradiative losses in InAs quantum-dot lasers,” Appl. Phys. Lett. 107(17), 171106 (2015).
[Crossref]

D. R. Matthews, H. D. Summers, P. M. Smowton, and M. Hopkinson, “Experimental investigation of the effect of wetting-layer states on the gain-current characteristic of quantum-dot lasers,” Appl. Phys. Lett. 81(26), 4904–4906 (2002).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3 $\mu$μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111(12), 122107 (2017).
[Crossref]

S. Liu, J. Norman, D. Jung, M. Kennedy, A. C Gossard, and J. Bowers, “Monolithic 9 GHz passively mode locked quantum dot lasers directly grown on on-axis (001) Si,” Appl. Phys. Lett. 113(4), 041108 (2018).
[Crossref]

Electron. Lett. (2)

S. Liu, D. Jung, J. C. Norman, M. J. Kennedy, A. C. Gossard, and J. E. Bowers, “490 fs pulse generation from passively mode-locked single section quantum dot laser directly grown on on-axis GaP/Si,” Electron. Lett. 54(7), 432–433 (2018).
[Crossref]

Z. Mi, J. Yang, P. Bhattacharya, and D. L. Huffaker, “Self-organised quantum dots as dislocation filters: the case of GaAs-based lasers on silicon,” Electron. Lett. 42(2), 121–123 (2006).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Weber, A. Klehr, A. Knigge, and S. Breuer, “Picosecond Pulse Generation and Pulse Train Stability of A Monolithic Passively Mode-Locked Semiconductor Quantum-Well Laser at 1070 nm,” IEEE J. Quantum Electron. 54(3), 1–9 (2018).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55(2), 1–11 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

R. Helkey, A. A. M. Saleh, J. Buckwalter, and J. E. Bowers, “High-Performance Photonic Integrated Circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 25(5), 1–15 (2019).
[Crossref]

M. G. Thompson, A. R. Rae, M. Xia, R. V. Penty, and I. H. White, “InGaAs Quantum-Dot Mode-Locked Laser Diodes,” IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009).
[Crossref]

IEEE Nanotechnology Mag. (1)

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/Silicon photonics: Fabricating fully functional transceivers,” IEEE Nanotechnology Mag. 13(2), 17–26 (2019).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Zibar, L. K. Oxenlowe, H. C. H. Mulvad, J. Mork, M. Galili, A. T. Clausen, and P. Jeppesen, “The Effect of Timing Jitter on a 160-Gb/s Demultiplexer,” IEEE Photonics Technol. Lett. 19(13), 957–959 (2007).
[Crossref]

F. Kefelian, S. O’Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in Monolithic Passively Mode-Locked Semiconductor Laser,” IEEE Photonics Technol. Lett. 20(16), 1405–1407 (2008).
[Crossref]

G. Carpintero, M. G. Thompson, R. V. Penty, and I. H. White, “Low noise performance of passively mode-locked 10-ghz quantum-dot laser diode,” IEEE Photonics Technol. Lett. 21(6), 389–391 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. A: Pure Appl. Opt. (1)

P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A: Pure Appl. Opt. 8(4), S33–S46 (2006).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J. K. Mee, R. Raghunathan, J. B. Wright, and L. F. Lester, “Device geometry considerations for ridge waveguide quantum dot mode-locked lasers,” J. Phys. D: Appl. Phys. 47(23), 233001 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. Grundmann and D. Bimberg, “Gain and threshold of quantum dot lasers: Theory and comparison to experiments,” Jpn. J. Appl. Phys. 36(6B), 4181–4187 (1997).
[Crossref]

Laser Photonics Rev. (2)

Z. Wang, A. Abbasi, U. Dave, A. De Groote, S. Kumari, B. Kunert, C. Merckling, M. Pantouvaki, Y. Shi, B. Tian, K. Van Gasse, J. Verbist, R. Wang, W. Xie, J. Zhang, Y. Zhu, J. Bauwelinck, X. Yin, Z. Hens, J. Van Campenhout, B. Kuyken, R. Baets, G. Morthier, D. Van Thourhout, and G. Roelkens, “Novel Light Source Integration Approaches for Silicon Photonics,” Laser Photonics Rev. 11(4), 1700063 (2017).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III-V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Microelectron. J. (1)

D. Bimberg, M. Kuntz, and M. Laemmlin, “Quantum dot photonic devices for lightwave communication,” Microelectron. J. 36(3-6), 175–179 (2005).
[Crossref]

Nat. Photonics (3)

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

D. Liang and J. Bowers, “Recent progress in lasers on silicon,” Nat. Photonics 4(8), 511–517 (2010).
[Crossref]

E. Rafailov, M. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Nature (2)

H. Rong, R. Jones, A. Liu, O. Cohen, D. Hak, A. Fang, and M. Paniccia, “A continuous-wave Raman silicon laser,” Nature 433(7027), 725–728 (2005).
[Crossref]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “Silicon-chip-based ultrafast optical oscilloscope,” Nature 456(7218), 81–84 (2008).
[Crossref]

Opt. Express (10)

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref]

O. Boyraz and B. Jalali, “Demonstration of a silicon Raman laser,” Opt. Express 12(21), 5269–5273 (2004).
[Crossref]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[Crossref]

Y. Cheng, X. Luo, J. Song, T.-Y. Liow, G.-Q. Lo, Y. Cao, X. Hu, X. Li, P. H. Lim, and Q. J. Wang, “Passively mode-locked III-V/silicon laser with continuous-wave optical injection,” Opt. Express 23(5), 6392–6399 (2015).
[Crossref]

H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18(4), 3415–3425 (2010).
[Crossref]

K. Tanabe, D. Guimard, D. Bordel, S. Iwamoto, and Y. Arakawa, “Electrically pumped 1.3 $\mu$μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer,” Opt. Express 18(10), 10604–10608 (2010).
[Crossref]

T. Wang, H. Liu, A. Lee, F. Pozzi, and A. Seeds, “1.3-µm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates,” Opt. Express 19(12), 11381–11386 (2011).
[Crossref]

C.-Y. Lin, F. Grillot, Y. Li, R. Raghunathan, and L. F. Lester, “Characterization of timing jitter in a 5 GHz quantum dot passively mode-locked laser,” Opt. Express 18(21), 21932–21937 (2010).
[Crossref]

L. Drzewietzki, S. Breuer, and W. Elsäßer, “Timing jitter reduction of passively mode-locked semiconductor lasers by self- and external-injection: Numerical description and experiments,” Opt. Express 21(13), 16142–16161 (2013).
[Crossref]

Opt. Lett. (2)

Optica (1)

Photonics Res. (2)

A. Z. Subramanian, E. Ryckeboer, A. Dhakal, F. Peyskens, A. Malik, B. Kuyken, H. Zhao, S. Pathak, A. Ruocco, A. D. Groote, P. Wuytens, D. Martens, F. Leo, W. Xie, U. D. Dave, M. Muneeb, P. V. Dorpe, J. V. Campenhout, W. Bogaerts, P. Bienstman, N. L. Thomas, D. V. Thourhout, Z. Hens, G. Roelkens, and R. Baets, “Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited],” Photonics Res. 3(5), B47–B59 (2015).
[Crossref]

M. L. Davenport, S. Liu, and J. E. Bowers, “Integrated heterogeneous silicon/III-V mode-locked lasers,” Photonics Res. 6(5), 468–478 (2018).
[Crossref]

Phys. Lett. A (1)

H. Weber, “Comments on the pulse width measurement with two-photon excitation of fluorescence,” Phys. Lett. A 27(5), 321–322 (1968).
[Crossref]

Phys. Status Solidi A (1)

D. Bimberg, G. Fiol, M. Kuntz, C. Meuer, M. Lammlin, N. Ledentsov, and A. Kovsh, “High speed nanophotonic devices based on quantum dots,” Phys. Status Solidi A 203(14), 3523–3532 (2006).
[Crossref]

Proc. IEEE (1)

M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[Crossref]

Sci. Rep. (1)

S. Meinecke, L. Drzewietzki, C. Weber, B. Lingnau, S. Breuer, and K. Ludge, “Ultra-Short Pulse Generation in a Three Section Tapered Passively Mode-Locked Quantum-Dot Semiconductor Laser,” Sci. Rep. 9(1), 1783 (2019).
[Crossref]

Semicond. Sci. Technol. (1)

L. V. Asryan and R. Suris, “Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser,” Semicond. Sci. Technol. 11(4), 554–567 (1996).
[Crossref]

Other (2)

S. Chen, M. Tang, S. Shutts, S. Elliott, A. Sobiesierski, I. Ross, P. Smowton, A. Seeds, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers monolithically grown on silicon,” in “2016 International Semiconductor Laser Conference (ISLC),” pp. 1–2 (2016).

E. Rafailov, M. Cataluna, and E. A. Avrutin, Quantum Dot Saturable Absorbers (John Wiley & Sons, Ltd, 2011), Chap. 4, pp. 77–97.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of the measurement set-up. The laser emission is fiber-coupled and amplified by a booster optical amplifier and then analyzed by an intensity auto-correlator, fast-photodiode and electrical spectrum analyzer and an optical spectrum analyzer.
Fig. 2.
Fig. 2. (a) Average fiber coupled optical power of the passively mode-locked laser before entering the booster optical amplifier. The coupling efficiency is around 30 %. (b) Spectrum of the amplified spontaneous emission solely by the booster optical amplifier at 600 mA and $27\,^\circ$C centered around 1300 nm. The −3dB spectral width is 67 nm.
Fig. 3.
Fig. 3. (a) Color-coded fundamental mode-locking beat frequency peak signal-to-noise ratio in dependence on the absorber reverse bias voltage and the gain current. A large mode-locking area with ratios >50 dB is obtained. The maximum ratio of 59 dB is found at a gain current of 160 mA and 1.4 V reverse bias voltage. In the gray area, above lasing threshold, and at high reverse bias voltages, radio-frequency peak signal-to-noise ratio less than 30 dB result. (b) Selected radio-frequency spectrum acquired at an injection current of 120 mA and at an applied absorber reverse bias voltage of 2.6 V and indicated within a frequency span of 45 GHz.
Fig. 4.
Fig. 4. (a) Color-coded de-convoluted pulse width in dependence on gain current and absorber reverse bias voltage. Gray: continuous-wave emission. (b) Example auto-correlation time traces with Gaussian fits. The shortest pulse width of 1.7 ps is depicted in the left bottom corner found at an injection current of 120 mA and an absorber reverse bias voltage of 2.6 V. In the top left corner at 155 mA and 0.0 V a strong coherent spike on top of the Gaussian pulse is found what is ignored for the Gaussian fit.
Fig. 5.
Fig. 5. (a) Color-coded −3 dB spectral width in dependence on gain c reverse bias voltage. (b) Example optical spectra for different bias conditions. The bottom left corner shows the spectrum for an injection current of 120 mA and an absorber reverse bias voltage of 2.6 V at the shortest pulse width of 1.7 ps depicting a −3dB spectral width of 2.63 nm.
Fig. 6.
Fig. 6. (a) Color-coded time bandwidth product and (b) color-coded relative amplitude jitter in dependence on the absorber reverse bias voltage and the gain current.
Fig. 7.
Fig. 7. (a) Color-coded pulse-to-pulse timing jitter in dependence on the absorber reverse bias voltage and the gain current. (b) Example timing phase noise power spectral density trace $L(f)$ for 105 mA and 0.6 V where the lowest timing jitter of 9 fs is found. This trace belongs to a repetition rate line width of 400 Hz plotted with a green dashed line as guide to the eye.

Tables (2)

Tables Icon

Table 1. Performance of Monolithic Passively Mode-Locked Quantum Dot Lasers

Tables Icon

Table 2. Best Values of Characteristic Laser Parameters

Metrics