Abstract

Transmission of high power laser beams through partially absorbing materials modifies the light propagation via a thermally-induced effect known as thermal lensing. This may cause changes in the beam waist position and degrade the beam quality. Here we characterize the effect of thermal lensing associated with the different elements typically employed in an optical trapping setup for cold atoms experiments. We find that the only relevant thermal lens is represented by the TeO2 crystal of the acousto-optic modulator exploited to adjust the laser power on the atomic sample. We then devise a simple and totally passive scheme that enables to realize an inexpensive optical trapping apparatus essentially free from thermal lensing effects.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Beam pointing stabilization of an acousto-optic modulator with thermal control

Xiao Zhang, Yang Chen, Jianxiong Fang, Tishuo Wang, Jiaming Li, and Le Luo
Opt. Express 27(8) 11503-11509 (2019)

Optimization of a crossed optical dipole trap for loading and confining laser-cooled atoms

Guan-Bo Liao, Keng-Shuo Wu, Chung-You Shih, Yu-Hsuan Cheng, Li-An Sun, Yu-Ju Lin, and Ming-Shien Chang
J. Opt. Soc. Am. B 34(4) 869-876 (2017)

The lensing effect of trapped particles in a dual-beam optical trap

Steffen Grosser, Anatol W. Fritsch, Tobias R. Kießling, Roland Stange, and Josef A. Käs
Opt. Express 23(4) 5221-5235 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  2. R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” (Academic, 2000), pp. 95–170.
  3. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
    [Crossref]
  4. M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971).
    [Crossref]
  5. B. Bendow and P. D. Gianino, “Optics of thermal lensing in solids,” Appl. Opt. 12, 710–718 (1973).
    [Crossref] [PubMed]
  6. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663 (1982).
    [Crossref] [PubMed]
  7. R. G. Beausoleil, E. K. Gustafson, M. M. Fejer, E. D’Ambrosio, W. Kells, and J. Camp, “Model of thermal wave-front distortion in interferometric gravitational- wave detectors. I. thermal focusing,” J. Opt. Soc. Am. B 20, 1247–1268 (2003).
    [Crossref]
  8. C. Bogan, P. Kwee, S. Hild, S. H. Huttner, and B. Willke, “Novel technique for thermal lens measurement in commonly used optical components,” Opt. Express 23, 15380 (2015).
    [Crossref] [PubMed]
  9. K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
    [Crossref]
  10. S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
    [Crossref] [PubMed]
  11. A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
    [Crossref]
  12. E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
    [Crossref]
  13. F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
    [Crossref]
  14. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
    [Crossref]
  15. R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
    [Crossref] [PubMed]
  16. S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
    [Crossref]
  17. A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
    [Crossref]
  18. V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
    [Crossref]
  19. K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
    [Crossref]
  20. M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
    [Crossref] [PubMed]
  21. C. A. Klein, “Thermally induced optical distortion in high-energy laser systems,” Opt. Eng. 18, 591 – 601 (1979).
    [Crossref]
  22. C. A. Klein, “Materials for high-power laser optics: the thermal lensing issue,” Proc. SPIE 10286, 102860D (1996).
    [Crossref]
  23. R. M. Waxler and G. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. 77A, 755 (1973).
    [Crossref]
  24. P. Hello and J.-Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. 51, 1267–1282 (1990).
    [Crossref]
  25. S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
    [Crossref] [PubMed]
  26. R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
    [Crossref]
  27. T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97–L100 (1983).
    [Crossref]
  28. T. A. Hahn and R. K. Kirby, “Thermal expansion of fused silica from 80 to 1000 K-standard reference material 739,” AIP Conf. Proc. 3, 13–24 (1972).
    [Crossref]
  29. M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2−3 µm,” Opt. Commun. 188, 129 – 139 (2001).
    [Crossref]
  30. B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

2015 (3)

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

C. Bogan, P. Kwee, S. Hild, S. H. Huttner, and B. Willke, “Novel technique for thermal lens measurement in commonly used optical components,” Opt. Express 23, 15380 (2015).
[Crossref] [PubMed]

2014 (1)

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

2013 (1)

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

2011 (1)

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

2010 (3)

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

2008 (1)

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

2005 (1)

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

2003 (2)

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

R. G. Beausoleil, E. K. Gustafson, M. M. Fejer, E. D’Ambrosio, W. Kells, and J. Camp, “Model of thermal wave-front distortion in interferometric gravitational- wave detectors. I. thermal focusing,” J. Opt. Soc. Am. B 20, 1247–1268 (2003).
[Crossref]

2002 (2)

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
[Crossref] [PubMed]

2001 (1)

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2−3 µm,” Opt. Commun. 188, 129 – 139 (2001).
[Crossref]

2000 (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

1996 (1)

C. A. Klein, “Materials for high-power laser optics: the thermal lensing issue,” Proc. SPIE 10286, 102860D (1996).
[Crossref]

1990 (1)

P. Hello and J.-Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. 51, 1267–1282 (1990).
[Crossref]

1983 (2)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97–L100 (1983).
[Crossref]

S. A. Self, “Focusing of spherical Gaussian beams,” Appl. Opt. 22, 658–661 (1983).
[Crossref] [PubMed]

1982 (1)

1979 (1)

C. A. Klein, “Thermally induced optical distortion in high-energy laser systems,” Opt. Eng. 18, 591 – 601 (1979).
[Crossref]

1973 (2)

R. M. Waxler and G. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. 77A, 755 (1973).
[Crossref]

B. Bendow and P. D. Gianino, “Optics of thermal lensing in solids,” Appl. Opt. 12, 710–718 (1973).
[Crossref] [PubMed]

1972 (1)

T. A. Hahn and R. K. Kirby, “Thermal expansion of fused silica from 80 to 1000 K-standard reference material 739,” AIP Conf. Proc. 3, 13–24 (1972).
[Crossref]

1971 (1)

M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971).
[Crossref]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Alcantara, P.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

Altmeyer, A.

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Bartenstein, M.

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Batär, A.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Baumer, F.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Beausoleil, R. G.

Bendow, B.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Bogan, C.

Burchianti, A.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Camp, J.

Chin, C.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Cleek, G.

R. M. Waxler and G. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. 77A, 755 (1973).
[Crossref]

D’Ambrosio, E.

de Araújo, M. A. C.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

de Oliveira, P. C.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

Dowd, W. H.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Fejer, M. M.

Gehm, M. E.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

Gianino, P. D.

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Görlitz, A.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Granade, S. R.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

Grimm, R.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” (Academic, 2000), pp. 95–170.

Grupp, U. F.

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

Gupta, S.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Gustafson, E. K.

Hahn, T. A.

T. A. Hahn and R. K. Kirby, “Thermal expansion of fused silica from 80 to 1000 K-standard reference material 739,” AIP Conf. Proc. 3, 13–24 (1972).
[Crossref]

Hansen, A. H.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Hattori, A.

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

Hecker Denschlag, J.

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Hello, P.

P. Hello and J.-Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. 51, 1267–1282 (1990).
[Crossref]

Hemmer, S. L.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

Hendl, G.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Hibara, A.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Hild, S.

Höhl, C.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Huttner, S. H.

Inguscio, M.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Jali, P.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

Jamison, A. O.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Jochim, S.

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Julienne, P.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

Julienne, P. S.

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Kells, W.

Kerner, G.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Khashan, M.

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2−3 µm,” Opt. Commun. 188, 129 – 139 (2001).
[Crossref]

Khramov, A. Y.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Kimura, H.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Kirby, R. K.

T. A. Hahn and R. K. Kirby, “Thermal expansion of fused silica from 80 to 1000 K-standard reference material 739,” AIP Conf. Proc. 3, 13–24 (1972).
[Crossref]

Kitamori, T.

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Klein, C. A.

C. A. Klein, “Materials for high-power laser optics: the thermal lensing issue,” Proc. SPIE 10286, 102860D (1996).
[Crossref]

C. A. Klein, “Thermally induced optical distortion in high-energy laser systems,” Opt. Eng. 18, 591 – 601 (1979).
[Crossref]

Knight, L. V.

Kokkelmans, S. J. J. M. F.

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Kwee, P.

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Leviton, B. D.

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

Miller, H. K.

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Moreira, S. G. C.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

Naik, D.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Nassif, A.

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2−3 µm,” Opt. Commun. 188, 129 – 139 (2001).
[Crossref]

Nemitz, N.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

O’Hara, K. M.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

Onofrio, R.

R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
[Crossref] [PubMed]

Ovchinnikov, Y. B.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” (Academic, 2000), pp. 95–170.

Pace, E.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Pas, M. De

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Plotkin-Swing, B.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Porto, J. V.

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Presilla, C.

R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
[Crossref] [PubMed]

Quijada, M. A.

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

Riedl, S.

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Roati, G.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Rolston, S. L.

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

Roy, R. J.

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

Sawada, T.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Schreck, F.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Self, S. A.

Seman, J. A.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Sheldon, S. J.

Silva, R.

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

Sparks, M.

M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971).
[Crossref]

Spiegelhalder, F. M.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Tassy, S.

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

Thomas, J. E.

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

Thorne, J. M.

Tiamsuphat, J.

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

Tiecke, T. G.

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Tiesinga, E.

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Tokeshi, M.

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

Toyoda, T.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97–L100 (1983).
[Crossref]

Trenkwalder, A.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Uchiyama, K.

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Vaidya, V. D.

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

Valtolina, G.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

Vinet, J.-Y.

P. Hello and J.-Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. 51, 1267–1282 (1990).
[Crossref]

Walraven, J. T. M.

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Waxler, R. M.

R. M. Waxler and G. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. 77A, 755 (1973).
[Crossref]

Weidemüller, M.

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” (Academic, 2000), pp. 95–170.

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

Wille, E.

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

Willke, B.

Yabe, M.

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97–L100 (1983).
[Crossref]

Yamaguchi, J.

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

Zaccanti, M.

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

AIP Adv. (1)

R. Silva, M. A. C. de Araújo, P. Jali, S. G. C. Moreira, P. Alcantara, and P. C. de Oliveira, “Thermal lens spectrometry: Optimizing amplitude and shortening the transient time,” AIP Adv. 1, 022154 (2011).
[Crossref]

AIP Conf. Proc. (1)

T. A. Hahn and R. K. Kirby, “Thermal expansion of fused silica from 80 to 1000 K-standard reference material 739,” AIP Conf. Proc. 3, 13–24 (1972).
[Crossref]

Anal. Chem. (1)

M. Tokeshi, J. Yamaguchi, A. Hattori, and T. Kitamori, “Thermal lens micro optical systems,” Anal. Chem. 77, 626–630 (2005).
[Crossref] [PubMed]

Appl. Opt. (3)

J. Appl. Phys. (2)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965).
[Crossref]

M. Sparks, “Optical distortion by heated windows in high-power laser systems,” J. Appl. Phys. 42, 5029–5046 (1971).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

P. Hello and J.-Y. Vinet, “Analytical models of thermal aberrations in massive mirrors heated by high power laser beams,” J. Phys. 51, 1267–1282 (1990).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Tassy, N. Nemitz, F. Baumer, C. Höhl, A. Batär, and A. Görlitz, “Sympathetic cooling in a mixture of diamagnetic and paramagnetic atoms,” J. Phys. B: At. Mol. Opt. Phys. 43, 205309 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

T. Toyoda and M. Yabe, “The temperature dependence of the refractive indices of fused silica and crystal quartz,” J. Phys. D: Appl. Phys. 16, L97–L100 (1983).
[Crossref]

J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. (1)

R. M. Waxler and G. Cleek, “The effect of temperature and pressure on the refractive index of some oxide glasses,” J. Res. Natl. Bureau Standards Sect. A: Phys. Chem. 77A, 755 (1973).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Uchiyama, A. Hibara, H. Kimura, T. Sawada, and T. Kitamori, “Thermal lens microscope,” Jpn. J. Appl. Phys. 39, 5316–5322 (2000).
[Crossref]

Opt. Commun. (1)

M. Khashan and A. Nassif, “Dispersion of the optical constants of quartz and polymethyl methacrylate glasses in a wide spectral range: 0.2−3 µm,” Opt. Commun. 188, 129 – 139 (2001).
[Crossref]

Opt. Eng. (1)

C. A. Klein, “Thermally induced optical distortion in high-energy laser systems,” Opt. Eng. 18, 591 – 601 (1979).
[Crossref]

Opt. Express (1)

Phys. Rev. A (4)

A. H. Hansen, A. Y. Khramov, W. H. Dowd, A. O. Jamison, B. Plotkin-Swing, R. J. Roy, and S. Gupta, “Production of quantum-degenerate mixtures of ytterbium and lithium with controllable interspecies overlap,” Phys. Rev. A 87, 013615 (2013).
[Crossref]

V. D. Vaidya, J. Tiamsuphat, S. L. Rolston, and J. V. Porto, “Degenerate Bose-Fermi mixtures of rubidium and ytterbium,” Phys. Rev. A 92, 043604 (2015).
[Crossref]

A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, “Efficient all-optical production of large 6Li quantum gases using D1 gray-molasses cooling,” Phys. Rev. A 90, 043408 (2014).
[Crossref]

F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Kerner, E. Wille, G. Hendl, F. Schreck, and R. Grimm, “All-optical production of a degenerate mixture of 6Li and 40K and creation of heteronuclear molecules,” Phys. Rev. A 81, 043637 (2010).
[Crossref]

Phys. Rev. Lett. (2)

E. Wille, F. M. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder, G. Hendl, F. Schreck, R. Grimm, T. G. Tiecke, J. T. M. Walraven, S. J. J. M. F. Kokkelmans, E. Tiesinga, and P. S. Julienne, “Exploring an ultracold Fermi-Fermi mixture: Interspecies Feshbach resonances and scattering properties of 6Li and 40K,” Phys. Rev. Lett. 100, 053201 (2008).
[Crossref]

R. Onofrio and C. Presilla, “Reaching Fermi degeneracy in two-species optical dipole traps,” Phys. Rev. Lett. 89, 100401 (2002).
[Crossref] [PubMed]

Proc. SPIE (2)

C. A. Klein, “Materials for high-power laser optics: the thermal lensing issue,” Proc. SPIE 10286, 102860D (1996).
[Crossref]

B. D. Leviton, H. K. Miller, M. A. Quijada, and U. F. Grupp, “Temperature-dependent refractive index measurements of CaF2, Suprasil3001, and S − FT M16 for the euclid near-infrared spectrometer and photometer,” Proc. SPIE 9578, 95780M (2015).

Rev. Mod. Phys. (1)

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, “Feshbach resonances in ultracold gases,” Rev. Mod. Phys. 82, 1225–1286 (2010).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Science (2)

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, “Observation of a strongly interacting degenerate Fermi gas of atoms,” Science 298, 2179–2182 (2002).
[Crossref]

S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, S. Riedl, C. Chin, J. Hecker Denschlag, and R. Grimm, “Bose-Einstein condensation of molecules,” Science 302, 2101–2103 (2003).
[Crossref] [PubMed]

Other (1)

R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov, “Optical dipole traps for neutral atoms,” (Academic, 2000), pp. 95–170.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic visualization of thermal lensing of a Gaussian beam. Transmission of a laser beam through a partially absorbing medium of thickness , and characterized by an absorption coefficient b, locally heats up the material at a rate set by its thermal conductivity κ. The Gaussian profile of the beam induces a temperature gradient that changes the refractive index, and hence the beam path, according to the temperature dependence dn/dT of the substrate. Thermal expansion dℓ/dT and strain dependence of the refractive index can further change the direction of wave propagation (k) in the medium, which acts as a thin, weak lens. (b) Sketch of a thin lens fth positioned along the path of a Gaussian beam. The propagation of the incoming beam, characterized by a waist w0 (and Rayleigh length zR) placed at a distance s from the lens, will be modified by fth, that will create a new real (virtual) waist w 0 at a distance s> 0(s < 0) from the lens, according to Eq. (2). The sign convention for the object (image) position follows the one of ray optics: s > 0(s> 0) indicates a position on the left (right) of the lens plane.
Fig. 2
Fig. 2 Characterizing thermal lensing of different optical elements. (a) Setup for thermal lensing measurements. Along the full path, the high power beam passes through two lenses and one AOM. A BSF10−C coated beam sampler enables to create a low-power (P < 10 W) copy of the beam, which is further attenuated by transmission trough a high-reflection mirror (not shown). The resulting beam of a few mW is then focused by a third lens f3 and sent to a CCD camera mounted on a translation stage (double arrow). The focus position is measured by recording the peak intensity of the Gaussian spot versus the camera position. (b) Thermal shifts Δzth as a function of the laser power recorded for different combinations of optical elements. Right axis: Δzth due to the f1f2 telescope with f2 = 50mm in Suprasil 3001 (black triangles) or in UV fused silica (red diamonds). The shift of the f1 = 200 mm fused silica lens alone (yellow circles) has been tested directly by measuring its focus shift versus the beam power. For each data set, the dashed line is the corresponding shift calculated by Gaussian beam propagation analysis, assuming each element to represent an additional lens with fth given by Eq. (1) and characterized by the corresponding m0 value listed in Table 1. Left axis: Thermal shift of the optical setup with inclusion of the AOM crystal, with (black squares) or without (red circles) quartz window in the beam path. The AOM was placed at dAOM,2 = 3(1)cm behind the second lens f2, the last lens f3 at d3, AOM = 58(2)cm, whereas the window (if present) was at dwin,3 = 12(1) cm after f3. Solid lines (same color code) show the focus shift calculated by Gaussian beam propagation analysis, assuming the AOM thermal lens to be described by Eq. (1) with the m0 value given in Table 1.
Fig. 3
Fig. 3 Model setup to control thermal lensing effects. (a) Schematic view of the optical scheme employed for the characterization of the AOM thermal lens, as a function of the crystal position. A TeO2 crystal is placed at a variable distance δzAOM from the focus within the f1f2 telescope as shown in the picture. For this measure, f1 = 300 mm and f2 = 75 mm. The f3 lens is placed at d3,2 = 47(2)cm from the second lens f2, and the focus location is monitored for different levels of incident laser power through a CCD camera. (b) Thermal-induced shift Δzth of the f3 focus position experimentally determined (red diamonds), as a function of the AOM distance from the f1 focus. Δzth is obtained by comparing high and low power data acquired at P = 50(1)W and P = 9.0(5)W, respectively. The shift predicted by the Gaussian beam propagation analysis is shown as black lines for P = 55W (solid), P = 50 W (dashed) and P = 45W (dotted). Inset: expected behavior of Δzth for an incident power of 55W for three different distances between second and third lens: d3,2 = 47 cm (green), d3,2 = 50 cm (blue) and d3,2 = 44 cm (red).
Fig. 4
Fig. 4 Controlling the AOM thermal lensing through an equivalent lens. The two panels show the measured thermal shift Δzth (red circles) of the focus created by the last lens f3 as a function of the parameter δz given by Eq. (7), for the two different AOM locations discussed in the main text. (a) The AOM was positioned at dAOM,2 = 23(2)cm relative to the plane of the second lens. Δzth was obtained by comparing the focus position measured at P = 75(1)W and P = 9.0(5)W, respectively. Black lines show the simulated Δzth for different high power levels: 80 W (dotted lines), 75 W (dashed lines) and 70 W (solid lines). (b) Experimentally measured thermal shift as in panel a), but with the AOM positioned at dAOM,2 = 3(1)cm. Two high power values have been checked, relative to the low power reference at P = 9.0(5)W: 80(1)W (light red circles) and 150(2)W (dark red circles). Solid lines show the simulated trend expected for the two power levels. For both data sets, f1 = 300 mm and f2 = 75 mm, and the last lens f3 was kept fixed at d3,2 = 155(2)cm. In both panels, error bars combine the standard error of the axial intensity profile fitted to Eq. (6) for the high and low power data sets.
Fig. 5
Fig. 5 Realizing an optical dipole trap without thermal lensing effects. (a) Sketch of the setup employed to investigate thermal lensing by monitoring an atomic cloud trapped in the ODT. Typical atom number in the ODT after 400 ms illumination time ranges from 1 ×105 (P = 40W) to 7 ×105 (P = 220 W). For this measurements, f1 = 200 mm and f2 = 50 mm while the last lens f3 is placed at d3, AOM = 200(5)cm. (b) Thermal shift Δzth of the focus position as a function of the beam power P for different values of the parameter δz: δz = 1.7(1)mm (red squares), δz = 1.2(1)mm (blue squares), δz = 0.45(1)mm (green squares), δz = 0.0(1)mm (white squares) and δz = −2.3(1)mm (black circles). (c) Thermal shift Δzth as a function of the parameter δz at a fixed power P = 220(2)W. The solid line shows the thermal shift expected from the Gaussian beam matrices calculation considering the fth of the AOM crystal given by Eq. (1) with the m0 value shown in Table 1. The dashed (dotted) line shows the expected thermal shift for fth + Δfth (fth −Δfth) where Δfth is our estimate of fth’s uncertainty of around 35%. Error bars combine the statistical uncertainties of the high and low power reference data sets on the atomic cloud barycenter, obtained for each point from an average of 4 independent measurements.

Tables (1)

Tables Icon

Table 1 List of m0 values characterizing the different sources of Thermal Lensing in our setup.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

f t h = 2 π κ 1.3 b ( d n / d T ) w 2 P 1 m 0 w 2 P .
s = z R 2 f t h s ( 1 s f t h ) z R 2 f t h 2 + s ( 1 s f t h ) 2
w 1 w 0 = 1 ( 1 s / f t h ) 2 + ( z R / f t h ) 2 .
s = z R 2 f t h 1 + z R 2 f t h 2
w 1 w 0 = 1 1 + ( z R f t h ) 2 .
I ( z , z 0 ) = I 0 ( w 0 w ( z ) ) 2 = I 0 1 + ( z z 0 z R ) 2
δ z = L 2 L 1 ( f 1 + f 2 ) .

Metrics