Abstract

In this work, we have demonstrated a stimulated emission (SE)-based pump-probe microscopy with subharmonic fast gate synchronization, which allows over an order of magnitude improvement in signal-to-noise ratio. Critically, the alternative way of modulation is implemented with the highest possible frequency that follows the lasers’ repetition rate. Its working is based on a homemade frequency divider that divides the repetition frequency (76 MHz) of the Ti:sapphire (probe) laser to half of the repetition frequency, 38 MHz, which is used to synchronously drive the pump laser and to provide the reference signal for the ensuing lock-in detection. In this way, SE can be detected with sensitivity reaching the theoretical (shot noise) limits, with a much lower time constant (0.1 ms) for faster image acquisition.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses

Yasuyuki Ozeki, Yuma Kitagawa, Kazuhiko Sumimura, Norihiko Nishizawa, Wataru Umemura, Shin’ichiro Kajiyama, Kiichi Fukui, and Kazuyoshi Itoh
Opt. Express 18(13) 13708-13719 (2010)

Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique

Keisuke Nose, Yasuyuki Ozeki, Tatsuya Kishi, Kazuhiko Sumimura, Norihiko Nishizawa, Kiichi Fukui, Yasuo Kanematsu, and Kazuyoshi Itoh
Opt. Express 20(13) 13958-13965 (2012)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
    [Crossref]
  2. C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
    [Crossref]
  3. C.-Y. Dong, C. Buehler, P. T. So, T. French, and E. Gratton, “Implementation of intensity-modulated laser diodes in time-resolved, pump–probe fluorescence microscopy,” Appl. Opt. 40(7), 1109–1115 (2001).
    [Crossref]
  4. C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
    [Crossref]
  5. P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
    [Crossref]
  6. D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
    [Crossref]
  7. T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
    [Crossref]
  8. E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-resolution structured pump-probe microscopy,” ACS Photonics 3(4), 501–506 (2016).
    [Crossref]
  9. A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
    [Crossref]
  10. P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
    [Crossref]
  11. T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
    [Crossref]
  12. P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express 20(10), 11445–11450 (2012).
    [Crossref]
  13. J. Ge, C. Kuang, S.-S. Lee, and F.-J. Kao, “Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission,” Opt. Express 20(27), 28216–28221 (2012).
    [Crossref]
  14. J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
    [Crossref]
  15. J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Resolution improvement in laser diode-based pump–probe microscopy with an annular pupil filter,” Opt. Lett. 39(14), 4219–4222 (2014).
    [Crossref]
  16. Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009).
    [Crossref]
  17. C.-S. Liao, K.-C. Huang, W. Hong, A. J. Chen, C. Karanja, P. Wang, G. Eakins, and J.-X. Cheng, “Stimulated Raman spectroscopic imaging by microsecond delay-line tuning,” Optica 3(12), 1377–1380 (2016).
    [Crossref]
  18. X. Audier, N. Balla, and H. Rigneault, “Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line,” Opt. Lett. 42(2), 294–297 (2017).
    [Crossref]
  19. B. G. Saar, G. R. Holtom, C. W. Freudiger, C. Ackermann, W. Hill, and X. S. Xie, “Intracavity wavelength modulation of an optical parametric oscillator for coherent Raman microscopy,” Opt. Express 17(15), 12532–12539 (2009).
    [Crossref]
  20. C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
    [Crossref]
  21. Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
    [Crossref]
  22. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  23. Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
    [Crossref]
  24. L. Czerwinski, J. Nixdorf, G. Di Florio, and P. Gilch, “Broadband stimulated Raman microscopy with 0.1 ms pixel acquisition time,” Opt. Lett. 41(13), 3021–3024 (2016).
    [Crossref]
  25. P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
    [Crossref]
  26. A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

2019 (1)

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

2018 (1)

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

2017 (1)

2016 (5)

2014 (4)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

J. Miyazaki, H. Tsurui, A. Hayashi-Takagi, H. Kasai, and T. Kobayashi, “Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes,” Opt. Express 22(8), 9024–9032 (2014).
[Crossref]

J. Miyazaki, K. Kawasumi, and T. Kobayashi, “Resolution improvement in laser diode-based pump–probe microscopy with an annular pupil filter,” Opt. Lett. 39(14), 4219–4222 (2014).
[Crossref]

2013 (1)

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

2012 (4)

T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express 20(10), 11445–11450 (2012).
[Crossref]

J. Ge, C. Kuang, S.-S. Lee, and F.-J. Kao, “Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission,” Opt. Express 20(27), 28216–28221 (2012).
[Crossref]

2010 (1)

2009 (2)

2007 (1)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

2001 (1)

2000 (1)

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

1999 (1)

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

1995 (1)

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

Achermann, M.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

Ackermann, C.

Andresen, E. R.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Asai, T.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

Audier, X.

Balla, N.

Berto, P.

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Bielefeldt, H.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

Brida, D.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
[Crossref]

Brown, W. P.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

Buehler, C.

C.-Y. Dong, C. Buehler, P. T. So, T. French, and E. Gratton, “Implementation of intensity-modulated laser diodes in time-resolved, pump–probe fluorescence microscopy,” Appl. Opt. 40(7), 1109–1115 (2001).
[Crossref]

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

Calderbank, R.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Chang, C.-S.

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express 20(10), 11445–11450 (2012).
[Crossref]

Chen, A. J.

Cheng, J.-X.

Czerwinski, L.

Dake, F.

Deb, S.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Delaney, J. K.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

Dellwig, T.

T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
[Crossref]

Di Florio, G.

Dong, C.

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

Dong, C.-Y.

Eakins, G.

Ebner, L.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

Fimpel, P.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
[Crossref]

Fischer, M. C.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

French, T.

C.-Y. Dong, C. Buehler, P. T. So, T. French, and E. Gratton, “Implementation of intensity-modulated laser diodes in time-resolved, pump–probe fluorescence microscopy,” Appl. Opt. 40(7), 1109–1115 (2001).
[Crossref]

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

Freudiger, C. W.

Fu, D.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

Fukui, K.

Ge, J.

Gilch, P.

Gogoi, A.

A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

Gratton, E.

C.-Y. Dong, C. Buehler, P. T. So, T. French, and E. Gratton, “Implementation of intensity-modulated laser diodes in time-resolved, pump–probe fluorescence microscopy,” Appl. Opt. 40(7), 1109–1115 (2001).
[Crossref]

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

Grumstrup, E. M.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-resolution structured pump-probe microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Hayashi-Takagi, A.

Hill, A. H.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-resolution structured pump-probe microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Hill, W.

Holtom, G. R.

Hong, W.

Huang, K.-C.

Itoh, K.

Kajiyama, S.

Kajiyama, S. i.

Kao, F.-J.

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
[Crossref]

P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express 20(10), 11445–11450 (2012).
[Crossref]

J. Ge, C. Kuang, S.-S. Lee, and F.-J. Kao, “Fluorescence lifetime imaging with pulsed diode laser enabled stimulated emission,” Opt. Express 20(27), 28216–28221 (2012).
[Crossref]

A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

Karanja, C.

Kasai, H.

Kawasumi, K.

Keiser, G.

A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

Keller, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

Kitagawa, Y.

Kobayashi, T.

Kocher, C.

Kölbl, C.

Kuang, C.

Lee, S.-S.

Leitenstorfer, A.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
[Crossref]

Liang, Y.-C.

A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

Liao, C.-S.

Lin, P.-Y.

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
[Crossref]

P.-Y. Lin, S.-S. Lee, C.-S. Chang, and F.-J. Kao, “Long working distance fluorescence lifetime imaging with stimulated emission and electronic time delay,” Opt. Express 20(10), 11445–11450 (2012).
[Crossref]

Lin, Y.-C.

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

Massaro, E. S.

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-resolution structured pump-probe microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Matthews, T. E.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

Miyazaki, J.

Nechay, B. A.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref]

Nixdorf, J.

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref]

Y. Ozeki, F. Dake, S. Kajiyama, K. Fukui, and K. Itoh, “Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy,” Opt. Express 17(5), 3651–3658 (2009).
[Crossref]

Palmer, M.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

Riek, C.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
[Crossref]

Rigneault, H.

X. Audier, N. Balla, and H. Rigneault, “Pump-probe micro-spectroscopy by means of an ultra-fast acousto-optics delay line,” Opt. Lett. 42(2), 294–297 (2017).
[Crossref]

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Robles, F. E.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Saar, B. G.

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Shou, J.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

Siegner, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

So, P.

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

So, P. T.

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref]

Thompson, A.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Tsurui, H.

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Y. Ozeki, Y. Kitagawa, K. Sumimura, N. Nishizawa, W. Umemura, S. i. Kajiyama, K. Fukui, and K. Itoh, “Stimulated Raman scattering microscope with shot noise limited sensitivity using subharmonically synchronized laser pulses,” Opt. Express 18(13), 13708–13719 (2010).
[Crossref]

Villafana, T. E.

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

Wang, P.

Warren, W. S.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

Wilson, J. W.

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Xie, X. S.

Ye, T.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

Yoshimi, H.

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

Yurtsever, G.

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

Zirak, P.

Zumbusch, A.

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

C. Riek, C. Kocher, P. Zirak, C. Kölbl, P. Fimpel, A. Leitenstorfer, A. Zumbusch, and D. Brida, “Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source,” Opt. Lett. 41(16), 3731–3734 (2016).
[Crossref]

ACS Photonics (1)

E. S. Massaro, A. H. Hill, and E. M. Grumstrup, “Super-resolution structured pump-probe microscopy,” ACS Photonics 3(4), 501–506 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Fimpel, C. Riek, L. Ebner, A. Leitenstorfer, D. Brida, and A. Zumbusch, “Boxcar detection for high-frequency modulation in stimulated Raman scattering microscopy,” Appl. Phys. Lett. 112(16), 161101 (2018).
[Crossref]

Biophys. J. (2)

C. Buehler, C. Dong, P. So, T. French, and E. Gratton, “Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy,” Biophys. J. 79(1), 536–549 (2000).
[Crossref]

C. Dong, P. So, T. French, and E. Gratton, “Fluorescence lifetime imaging by a synchronous pump-probe microscopy,” Biophys. J. 69(6), 2234–2242 (1995).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Ozeki, T. Asai, J. Shou, and H. Yoshimi, “Multicolor stimulated Raman scattering microscopy with fast wavelength-tunable Yb fiber laser,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–11 (2019).
[Crossref]

J. Biomed. Opt. (2)

D. Fu, T. Ye, T. E. Matthews, G. Yurtsever, and W. S. Warren, “Two-color, two-photon, and excited-state absorption microscopy,” J. Biomed. Opt. 12(5), 054004 (2007).
[Crossref]

T. Dellwig, P.-Y. Lin, and F.-J. Kao, “Long-distance fluorescence lifetime imaging using stimulated emission,” J. Biomed. Opt. 17(1), 011009 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

P.-Y. Lin, Y.-C. Lin, C.-S. Chang, and F.-J. Kao, “Fluorescence lifetime imaging microscopy with subdiffraction-limited resolution,” Jpn. J. Appl. Phys. 52(2R), 028004 (2013).
[Crossref]

Nat. Photonics (1)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

T. E. Villafana, W. P. Brown, J. K. Delaney, M. Palmer, W. S. Warren, and M. C. Fischer, “Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork,” Proc. Natl. Acad. Sci. U. S. A. 111(5), 1708–1713 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70(6), 2758–2764 (1999).
[Crossref]

Sci. Rep. (1)

A. Thompson, F. E. Robles, J. W. Wilson, S. Deb, R. Calderbank, and W. S. Warren, “Dual-wavelength pump-probe microscopy analysis of melanin composition,” Sci. Rep. 6(1), 36871 (2016).
[Crossref]

Other (1)

A. Gogoi, Y.-C. Liang, G. Keiser, and F.-J. Kao, “Stimulated Raman Scattering Microscopy for Brain Imaging: Basic Principle, Measurements, and Applications,” in Advanced Optical Methods for Brain Imaging, F.-J. Kao, G. Keiser, and A. Gogoi, eds. (Springer, Singapore, Singapore, 2019), pp. 189–218.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Jablonski diagram of pump-probe based SE process. S0 and S1 are the ground and the excited states. The excitation (pump beam), SE (probe beam), and fluorescence emission are represented by blue (oe-27-19-27159-i001), red (oe-27-19-27159-i002), and green (oe-27-19-27159-i003) arrows, respectively. The working principles of lock-in detection of SE signal with (b) an intensity or amplitude modulation and (c) subharmonic synchronization at half repetition frequency. The SE signal $({\Delta {I_{SE}}} )$ is extracted accordingly from the probe beam with the corresponding modulation frequencies, ${\omega _m}$ in the case of (b) or $\left\{ {\frac{{{\omega_{rep\; ({pr} )}}}}{2}} \right\}$ in the case of (c).
Fig. 2.
Fig. 2. Experimental setup of subharmonic fast gate synchronized SE microscopy. LIA: Lock-in amplifier; PDL: Pulsed laser driver; M: Mirror; FD: Frequency divider; TDA: Trigger diode assembly; BS: Beam splitter; GR: Glass rod; OL: Objective lens; S: Sample; CL: Condenser lens; L: Lens; F: Filter; PD: Photodiode.
Fig. 3.
Fig. 3. (a) The oscilloscope signals for fast gate (black line), lock-in reference signal (red line), and the FD response to the probe beam (blue line). (b) The noise power spectrum of the PD circuit without optical input.
Fig. 4.
Fig. 4. The circuit diagram of the PD circuit. The operation current and voltage are <200 mA and ± 5 V, respectively.
Fig. 5.
Fig. 5. (a) SE signals from samples with varying dye concentrations as a function of the probe beam powers. Photodetector saturation is observed when the power of the probe beam is greater than 28 mW. (b) SE signal as a function of dye concentration, with the pump beam set at 1 mW and the probe beam at 5 mW, respectively.
Fig. 6.
Fig. 6. Signal variance, σ2, as a function of optical powers. The variance and slope of the graph are 3.26×10−10 and 1.15×10−10, respectively.
Fig. 7.
Fig. 7. (a) Confocal image versus (b) subharmonic SE image of a blood vessel. The SE image is recorded at 512×512 pixels with a scale bar of 50 µm. The time constant of the lock-in amplifier is set at 0.1 ms. Accordingly, the pixel dwell time is also set at 100 µs, to match the lock-in time constant.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I s = ( v T R ) 2 2 q ,
Δ I S E = ( k S E k S E + k f l ) η f l N v σ a b s I p u λ p u τ 1 h c ( ω p u ω p r )
I S E = I p r λ p r τ 2 h c
S N R = ( k S E k S E + k f l ) η f l N v σ a b s I p u λ p u τ 1 h c ( ω p u ω p r ) I p r λ p r τ 2 h c = ( k S E k S E + k f l ) η f l N v σ a b s I p u λ p u τ 1 h c ( ω p u ω p r ) h c I p r λ p r τ 2

Metrics