Abstract

Previous studies have shown that the radiant flux that needs to be emitted by an illumination system, can be significantly reduced by optimizing its spectral power distribution to the object reflectance spectra, without inducing perceptible chroma or hue shifts of the illuminated objects. In this paper, the idea is explored to vary the spectral power distribution at different positions in the illuminated scene, in order to tailor the color appearance of objects. For this, a spatially variable, laser diode based illumination system is considered with three primaries and large color gamut. The color rendering performance of the illumination system is quantified via the IES TM-30-2018 method. It is shown that it is possible to reach the maximal color gamut score that is theoretically allowed by the corresponding color fidelity score. This is a unique property of an illumination system with a spatially variable spectral power distribution. The radiant flux requirements of this laser diode based illumination system are theoretically investigated for various color rendering settings, showing reduced power requirements for higher color gamut. The possibility to tune color rendering is also experimentally demonstrated with a set-up that consists of a commercially available laser projector with a hyperspectral camera. By including a feedback optimization algorithm, it is possible to reach the targeted color rendering performance.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Development of the IES method for evaluating the color rendition of light sources

Aurelien David, Paul T. Fini, Kevin W. Houser, Yoshi Ohno, Michael P. Royer, Kevin A. G. Smet, Minchen Wei, and Lorne Whitehead
Opt. Express 23(12) 15888-15906 (2015)

Object color naturalness and attractiveness with spectrally optimized illumination

Dorukalp Durmus and Wendy Davis
Opt. Express 25(11) 12839-12850 (2017)

Color rendition engine

Artūras Žukauskas, Rimantas Vaicekauskas, Pranciškus Vitta, Arūnas Tuzikas, Andrius Petrulis, and Michael Shur
Opt. Express 20(5) 5356-5367 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
    [Crossref]
  2. W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
    [Crossref]
  3. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
    [Crossref]
  4. K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
    [Crossref]
  5. K. A. G. Smet and P. Hanselaer, “Memory and preferred colours and the colour rendition of white light sources,” Lighting Res. Technol. 48(4), 393–411 (2016).
    [Crossref]
  6. K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
    [Crossref]
  7. K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
    [Crossref]
  8. A. David, “Color fidelity of light sources evaluated over large sets of reflectance samples,” Leukos 10(2), 59–75 (2014).
    [Crossref]
  9. D. Durmus and W. Davis, “Optimising light source spectrum for object reflectance,” Opt. Express 23(11), A456–A464 (2015).
    [Crossref]
  10. J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
    [Crossref]
  11. D. Durmus and W. Davis, “Appearance of achromatic colors under optimized light source spectrum,” IEEE Photonics J. 10(6), 1–11 (2018).
    [Crossref]
  12. D. Durmus and W. Davis, “Object color naturalness and attractiveness with spectrally optimized illumination,” Opt. Express 25(11), 12839–12850 (2017).
    [Crossref]
  13. F. David and A. Kinjiro, “Hyperspectral imaging in color vision research: tutorial,” J. Opt. Soc. Am. A 36(4), 606–627 (2019).
    [Crossref]
  14. J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
    [Crossref]
  15. D. Durmus and W. Davis, “Blur perception and visual clarity in light projection systems,” Opt. Express 27(4), A216–A223 (2019).
    [Crossref]
  16. Panasonic Corp. “What's a space player?” https://panasonic.net/cns/projector/products/spaceplayer .
  17. M. S. Brennesholtz and E. H. Stupp, Projection displays (Wiley Publishing, 2008).
  18. G. Damberg and W. Heidrich, “Efficient freeform lens optimization for computational caustic displays,” Opt. Express 23(8), 10224–10232 (2015).
    [Crossref]
  19. W. F. Hsu and M. H. Weng, “Compact holographic projection display using liquid-crystal-on-Silicon spatial light modulator,” Materials 9(9), 768–776 (2016).
    [Crossref]
  20. M. Bawart, S. Bernet, and M. Ritsch-Marte, “Programmable freeform optical elements,” Opt. Express 25(5), 4898–4906 (2017).
    [Crossref]
  21. M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
    [Crossref]
  22. J. Shen, S. Chang, H. Wang, and Z. Zheng, “Optimal illumination for visual enhancement based on color entropy evaluation,” Opt. Express 24(17), 19788–19800 (2016).
    [Crossref]
  23. C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
    [Crossref]
  24. S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
    [Crossref]
  25. S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.
  26. Z. Liu, Q. Liu, G. A. Gao, and C. Li, “Optimized spectral reconstruction based on adaptive training set selection,” Opt. Express 25(11), 12435–12445 (2017).
    [Crossref]
  27. BT2020, I. T. U. R. “Parameter values for ultra-high definition television systems for production and international programme exchange,” (2012)
  28. M. R. Pointer, “The gamut of real surface colours,” Color Res. Appl. 5(3), 145–155 (1980).
    [Crossref]
  29. Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
    [Crossref]
  30. Illuminating engineering society of north America, “TM-30-18: IES method for evaluating light source color rendition,” (2018).
  31. K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
    [Crossref]
  32. A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
    [Crossref]
  33. M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
    [Crossref]
  34. T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Lighting Res. Technol. 51(3), 331–352 (2019).
    [Crossref]
  35. X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
    [Crossref]
  36. K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
    [Crossref]
  37. M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
    [Crossref]
  38. Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).
  39. M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Lighting Res. Technol. 50(7), 965–994 (2018).
    [Crossref]
  40. M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
    [Crossref]
  41. K. A. G. Smet, “Tutorial: The LuxPy Python toolbox for lighting and color science,” Leukos. (2019).
    [Crossref]
  42. S. Hermans, K. A. G. Smet, and P. Hanselaer, “Color appearance model for self-luminous stimuli,” J. Opt. Soc. Am. A 35(12), 2000–2009 (2018).
    [Crossref]
  43. M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
    [Crossref]
  44. Commission internationale de l'éclairage, “CIE Technical Note 001:2014 Chromaticity difference specification for light sources,” (2014).
  45. G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulas, 2nd edition (John Wiley & Sons. Press, 2000).
  46. D. Sizov, R. Bhat, and C. E. Zah, “Gallium indium Nitride-based green lasers,” J. Lightwave Technol. 30(5), 679–699 (2012).
    [Crossref]
  47. Nichia Corp, “Laser diode,” https://www.nichia.co.jp/en/product/laser.html (2019).
  48. D. Durmus, D. Abdalla, A. Duis, and W. Davis, “Spectral optimization to minimize light absorbed by artwork,” Leukos. (2018).

2019 (3)

2018 (3)

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Lighting Res. Technol. 50(7), 965–994 (2018).
[Crossref]

D. Durmus and W. Davis, “Appearance of achromatic colors under optimized light source spectrum,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

S. Hermans, K. A. G. Smet, and P. Hanselaer, “Color appearance model for self-luminous stimuli,” J. Opt. Soc. Am. A 35(12), 2000–2009 (2018).
[Crossref]

2017 (6)

D. Durmus and W. Davis, “Object color naturalness and attractiveness with spectrally optimized illumination,” Opt. Express 25(11), 12839–12850 (2017).
[Crossref]

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

M. Bawart, S. Bernet, and M. Ritsch-Marte, “Programmable freeform optical elements,” Opt. Express 25(5), 4898–4906 (2017).
[Crossref]

Z. Liu, Q. Liu, G. A. Gao, and C. Li, “Optimized spectral reconstruction based on adaptive training set selection,” Opt. Express 25(11), 12435–12445 (2017).
[Crossref]

2016 (6)

J. Shen, S. Chang, H. Wang, and Z. Zheng, “Optimal illumination for visual enhancement based on color entropy evaluation,” Opt. Express 24(17), 19788–19800 (2016).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

W. F. Hsu and M. H. Weng, “Compact holographic projection display using liquid-crystal-on-Silicon spatial light modulator,” Materials 9(9), 768–776 (2016).
[Crossref]

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

K. A. G. Smet and P. Hanselaer, “Memory and preferred colours and the colour rendition of white light sources,” Lighting Res. Technol. 48(4), 393–411 (2016).
[Crossref]

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

2015 (6)

D. Durmus and W. Davis, “Optimising light source spectrum for object reflectance,” Opt. Express 23(11), A456–A464 (2015).
[Crossref]

G. Damberg and W. Heidrich, “Efficient freeform lens optimization for computational caustic displays,” Opt. Express 23(8), 10224–10232 (2015).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).

M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
[Crossref]

2014 (4)

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

A. David, “Color fidelity of light sources evaluated over large sets of reflectance samples,” Leukos 10(2), 59–75 (2014).
[Crossref]

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

2013 (1)

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

2012 (2)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

D. Sizov, R. Bhat, and C. E. Zah, “Gallium indium Nitride-based green lasers,” J. Lightwave Technol. 30(5), 679–699 (2012).
[Crossref]

2010 (3)

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

2009 (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
[Crossref]

2006 (1)

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

2005 (1)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

1980 (1)

M. R. Pointer, “The gamut of real surface colours,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

Abdalla, D.

D. Durmus, D. Abdalla, A. Duis, and W. Davis, “Spectral optimization to minimize light absorbed by artwork,” Leukos. (2018).

Bawart, M.

Ben-Ezra, M.

C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
[Crossref]

Bernet, S.

Bhat, R.

Brennesholtz, M. S.

M. S. Brennesholtz and E. H. Stupp, Projection displays (Wiley Publishing, 2008).

Brown, M. S.

S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.

Champion, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
[Crossref]

Chang, S.

Chi, C.

C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
[Crossref]

Coltrin, M. E.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Corp, Nichia

Nichia Corp, “Laser diode,” https://www.nichia.co.jp/en/product/laser.html (2019).

Crawford, M. H.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Cui, G.

M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Damberg, G.

David, A.

K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

A. David, “Color fidelity of light sources evaluated over large sets of reflectance samples,” Leukos 10(2), 59–75 (2014).
[Crossref]

David, F.

Davis, R.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

Davis, W.

D. Durmus and W. Davis, “Blur perception and visual clarity in light projection systems,” Opt. Express 27(4), A216–A223 (2019).
[Crossref]

D. Durmus and W. Davis, “Appearance of achromatic colors under optimized light source spectrum,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

D. Durmus and W. Davis, “Object color naturalness and attractiveness with spectrally optimized illumination,” Opt. Express 25(11), 12839–12850 (2017).
[Crossref]

D. Durmus and W. Davis, “Optimising light source spectrum for object reflectance,” Opt. Express 23(11), A456–A464 (2015).
[Crossref]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

D. Durmus, D. Abdalla, A. Duis, and W. Davis, “Spectral optimization to minimize light absorbed by artwork,” Leukos. (2018).

Deconinck, G.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

Do, Y. R.

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Duis, A.

D. Durmus, D. Abdalla, A. Duis, and W. Davis, “Spectral optimization to minimize light absorbed by artwork,” Leukos. (2018).

Durmus, D.

Esposito, T.

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Lighting Res. Technol. 51(3), 331–352 (2019).
[Crossref]

Fein, M.

Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).

Feng, X.

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

Fini, P. T.

Fischer, A. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Freeman, M.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
[Crossref]

Gao, G. A.

Georgoula, M.

M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
[Crossref]

Han, Q.

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

Han, S.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

Hanselaer, P.

S. Hermans, K. A. G. Smet, and P. Hanselaer, “Color appearance model for self-luminous stimuli,” J. Opt. Soc. Am. A 35(12), 2000–2009 (2018).
[Crossref]

K. A. G. Smet and P. Hanselaer, “Memory and preferred colours and the colour rendition of white light sources,” Lighting Res. Technol. 48(4), 393–411 (2016).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

Heidrich, W.

Hermans, S.

Houser, K.

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Lighting Res. Technol. 51(3), 331–352 (2019).
[Crossref]

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

Houser, K. W.

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

Hsu, W. F.

W. F. Hsu and M. H. Weng, “Compact holographic projection display using liquid-crystal-on-Silicon spatial light modulator,” Materials 9(9), 768–776 (2016).
[Crossref]

Hu, R.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Jin, X.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Karlicek, R. F.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Kim, S. J.

S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.

Kinjiro, A.

Koleske, D. D.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Krames, M. R.

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

Li, C.

Z. Liu, Q. Liu, G. A. Gao, and C. Li, “Optimized spectral reconstruction based on adaptive training set selection,” Opt. Express 25(11), 12435–12445 (2017).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Liu, Q.

Liu, Z.

Luo, M.

M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
[Crossref]

Luo, M. R.

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Luo, R. M.

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Luo, X.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Madhavan, S.

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
[Crossref]

Miller, C.

Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).

Minchen, W.

Mossman, M.

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

Oh, J. H.

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Oh, S. W.

S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.

Ohno, Y.

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

Okabe, T.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

Pointer, M. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

M. R. Pointer, “The gamut of real surface colours,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

Pollefeys, M.

S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.

Ritsch-Marte, M.

Royer, M.

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

Royer, M. P.

Ryckaert, W. R.

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

Sato, I.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

Sato, Y.

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

Schanda, J.

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Shen, J.

Sizov, D.

Smet, K.

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

Smet, K. A. G.

S. Hermans, K. A. G. Smet, and P. Hanselaer, “Color appearance model for self-luminous stimuli,” J. Opt. Soc. Am. A 35(12), 2000–2009 (2018).
[Crossref]

K. A. G. Smet and P. Hanselaer, “Memory and preferred colours and the colour rendition of white light sources,” Lighting Res. Technol. 48(4), 393–411 (2016).
[Crossref]

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

K. A. G. Smet, “Tutorial: The LuxPy Python toolbox for lighting and color science,” Leukos. (2019).
[Crossref]

Stiles, W. S.

G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulas, 2nd edition (John Wiley & Sons. Press, 2000).

Stupp, E. H.

M. S. Brennesholtz and E. H. Stupp, Projection displays (Wiley Publishing, 2008).

Subramania, G. S.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Tsao, J. Y.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wang, G. T.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wang, H.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

J. Shen, S. Chang, H. Wang, and Z. Zheng, “Optimal illumination for visual enhancement based on color entropy evaluation,” Opt. Express 24(17), 19788–19800 (2016).
[Crossref]

Wei, M.

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Lighting Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

Weng, M. H.

W. F. Hsu and M. H. Weng, “Compact holographic projection display using liquid-crystal-on-Silicon spatial light modulator,” Materials 9(9), 768–776 (2016).
[Crossref]

Whitehead, L.

K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

Wierer, J. J.

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Wilkerson, A.

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Lighting Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

Wyszecki, G.

G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulas, 2nd edition (John Wiley & Sons. Press, 2000).

Xie, B.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Xu, W.

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

Yang, S. J.

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Yoo, H.

C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
[Crossref]

Yu, X.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Yu, Z.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Zah, C. E.

Zhang, J.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Zhang, L.

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

Zhang, S.

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

Zheng, Z.

Adv. Opt. Mater. (1)

J. Y. Tsao, M. H. Crawford, M. E. Coltrin, A. J. Fischer, D. D. Koleske, G. S. Subramania, G. T. Wang, J. J. Wierer, and R. F. Karlicek, “Toward smart and ultra-efficient solid-state lighting,” Adv. Opt. Mater. 2(9), 809–836 (2014).
[Crossref]

Color Res. Appl. (2)

M. R. Pointer, “The gamut of real surface colours,” Color Res. Appl. 5(3), 145–155 (1980).
[Crossref]

M. R. Luo, G. Cui, and C. Li, “Uniform colour spaces based on CIECAM02 colour appearance model,” Color Res. Appl. 31(4), 320–330 (2006).
[Crossref]

Energy. Buildings. (1)

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “A memory colour quality metric for white light sources,” Energy. Buildings. 49, 216–225 (2012).
[Crossref]

IEEE Photonics J. (2)

J. Zhang, R. Hu, B. Xie, X. Yu, X. Luo, Z. Yu, L. Zhang, H. Wang, and X. Jin, “Energy-saving light source spectrum optimization by considering object’s reflectance,” IEEE Photonics J. 9(2), 1–11 (2017).
[Crossref]

D. Durmus and W. Davis, “Appearance of achromatic colors under optimized light source spectrum,” IEEE Photonics J. 10(6), 1–11 (2018).
[Crossref]

Int. J. Comput. Vis. (2)

C. Chi, H. Yoo, and M. Ben-Ezra, “Multi-spectral imaging by optimized wide band illumination,” Int. J. Comput. Vis. 86(2–3), 140–151 (2010).
[Crossref]

S. Han, I. Sato, T. Okabe, and Y. Sato, “Fast spectral reflectance recovery using DLP projector,” Int. J. Comput. Vis. 110(2), 172–184 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (2)

Leukos (4)

K. Houser, M. Mossman, K. Smet, and L. Whitehead, “Tutorial: Color rendering and its applications in lighting,” Leukos 12(1–2), 7–26 (2016).
[Crossref]

K. A. G. Smet, L. Whitehead, J. Schanda, and R. M. Luo, “Toward a replacement of the CIE color rendering index for white light sources,” Leukos 12(1–2), 61–69 (2016).
[Crossref]

A. David, “Color fidelity of light sources evaluated over large sets of reflectance samples,” Leukos 10(2), 59–75 (2014).
[Crossref]

K. A. G. Smet, A. David, and L. Whitehead, “Why color space uniformity and sample set spectral uniformity are essential for color rendering measures,” Leukos 12(1–2), 39–50 (2016).
[Crossref]

Light Eng. (1)

Y. Ohno, M. Fein, and C. Miller, “Vision experiment on chroma saturation for colour quality preference,” Light Eng. 23(4), 6–14 (2015).

Light: Sci. Appl. (1)

J. H. Oh, S. J. Yang, and Y. R. Do, “Healthy, natural, efficient and tunable lighting: four-package white LEDs for optimizing the circadian effect, color quality and vision performance,” Light: Sci. Appl. 3(2), e141 (2014).
[Crossref]

Lighting Res. Technol. (8)

K. A. G. Smet and P. Hanselaer, “Memory and preferred colours and the colour rendition of white light sources,” Lighting Res. Technol. 48(4), 393–411 (2016).
[Crossref]

K. A. G. Smet, J. Schanda, L. Whitehead, and R. M. Luo, “CRI2012: A proposal for updating the CIE colour rendering index,” Lighting Res. Technol. 45(6), 689–709 (2013).
[Crossref]

M. Wei, K. W. Houser, A. David, and M. R. Krames, “Perceptual responses to LED illumination with colour rendering indices of 85 and 97,” Lighting Res. Technol. 47(7), 810–827 (2015).
[Crossref]

T. Esposito and K. Houser, “Models of colour quality over a wide range of spectral power distributions,” Lighting Res. Technol. 51(3), 331–352 (2019).
[Crossref]

X. Feng, W. Xu, Q. Han, and S. Zhang, “Colour-enhanced light emitting diode light with high gamut area for retail lighting,” Lighting Res. Technol. 49(3), 329–342 (2017).
[Crossref]

M. P. Royer, A. Wilkerson, and M. Wei, “Human perceptions of colour rendition at different chromaticities,” Lighting Res. Technol. 50(7), 965–994 (2018).
[Crossref]

M. Royer, A. Wilkerson, M. Wei, K. Houser, and R. Davis, “Human perceptions of colour rendition vary with average fidelity, average gamut, and gamut shape,” Lighting Res. Technol. 49(8), 966–991 (2017).
[Crossref]

M. Luo, G. Cui, and M. Georgoula, “Colour difference evaluation for white light sources,” Lighting Res. Technol. 47(3), 360–369 (2015).
[Crossref]

Materials (1)

W. F. Hsu and M. H. Weng, “Compact holographic projection display using liquid-crystal-on-Silicon spatial light modulator,” Materials 9(9), 768–776 (2016).
[Crossref]

Opt. Eng. (2)

Y. Ohno, “Spectral design considerations for white LED color rendering,” Opt. Eng. 44(11), 111302 (2005).
[Crossref]

W. Davis and Y. Ohno, “Color quality scale,” Opt. Eng. 49(3), 033602 (2010).
[Crossref]

Opt. Express (9)

D. Durmus and W. Davis, “Optimising light source spectrum for object reflectance,” Opt. Express 23(11), A456–A464 (2015).
[Crossref]

G. Damberg and W. Heidrich, “Efficient freeform lens optimization for computational caustic displays,” Opt. Express 23(8), 10224–10232 (2015).
[Crossref]

D. Durmus and W. Davis, “Object color naturalness and attractiveness with spectrally optimized illumination,” Opt. Express 25(11), 12839–12850 (2017).
[Crossref]

D. Durmus and W. Davis, “Blur perception and visual clarity in light projection systems,” Opt. Express 27(4), A216–A223 (2019).
[Crossref]

Z. Liu, Q. Liu, G. A. Gao, and C. Li, “Optimized spectral reconstruction based on adaptive training set selection,” Opt. Express 25(11), 12435–12445 (2017).
[Crossref]

M. Bawart, S. Bernet, and M. Ritsch-Marte, “Programmable freeform optical elements,” Opt. Express 25(5), 4898–4906 (2017).
[Crossref]

K. A. G. Smet, W. R. Ryckaert, M. R. Pointer, G. Deconinck, and P. Hanselaer, “Memory colours and colour quality evaluation of conventional and solid-state lamps,” Opt. Express 18(25), 26229–26244 (2010).
[Crossref]

J. Shen, S. Chang, H. Wang, and Z. Zheng, “Optimal illumination for visual enhancement based on color entropy evaluation,” Opt. Express 24(17), 19788–19800 (2016).
[Crossref]

A. David, P. T. Fini, K. W. Houser, Y. Ohno, M. P. Royer, K. A. G. Smet, W. Minchen, and L. Whitehead, “Development of the IES method for evaluating the color rendition of light sources,” Opt. Express 23(12), 15888–11590 (2015).
[Crossref]

Opt. Photonics News (1)

M. Freeman, M. Champion, and S. Madhavan, “Scanned laser pico-projectors: Seeing the bg picture (with a small device),” Opt. Photonics News 20(5), 28–34 (2009).
[Crossref]

Other (10)

S. W. Oh, M. S. Brown, M. Pollefeys, and S. J. Kim, “Do it yourself hyperspectral imaging with everyday digital cameras,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2016), pp. 2461–2469.

BT2020, I. T. U. R. “Parameter values for ultra-high definition television systems for production and international programme exchange,” (2012)

Illuminating engineering society of north America, “TM-30-18: IES method for evaluating light source color rendition,” (2018).

Panasonic Corp. “What's a space player?” https://panasonic.net/cns/projector/products/spaceplayer .

M. S. Brennesholtz and E. H. Stupp, Projection displays (Wiley Publishing, 2008).

Commission internationale de l'éclairage, “CIE Technical Note 001:2014 Chromaticity difference specification for light sources,” (2014).

G. Wyszecki and W. S. Stiles, Color science: concepts and methods, quantitative data and formulas, 2nd edition (John Wiley & Sons. Press, 2000).

K. A. G. Smet, “Tutorial: The LuxPy Python toolbox for lighting and color science,” Leukos. (2019).
[Crossref]

Nichia Corp, “Laser diode,” https://www.nichia.co.jp/en/product/laser.html (2019).

D. Durmus, D. Abdalla, A. Duis, and W. Davis, “Spectral optimization to minimize light absorbed by artwork,” Leukos. (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Conceptual illustration of the considered smart lighting setup.
Fig. 2.
Fig. 2. (a) An example of the SPD of the laser diode illumination. (b) The SPD of the reference illuminant D50. (c) The color gamut of the laser based illumination covers almost entirely Pointer’s gamut.
Fig. 3.
Fig. 3. (a) Tradeoff between fidelity and gamut; light sources can only reside in the non-shaded area. With a spatially variable laser illumination an optimal trade-off between fidelity and gamut can be achieved: i.e. a combined fidelity/gamut score along the red dotted line. (b) The normalized (total radiant flux = 1W) spectral power distribution of the considered phosphor-converted LED (c) Color gamut shape of this LED and the reference illuminant (D50).
Fig. 4.
Fig. 4. (a) The required radiant flux for all 99 TCS’s to obtain a color fidelity Rf = 100. (b) The variation of the average radiant flux (average for 99 TCS’s) and the color gamut index as a function of Rf. (c) The a'b’ coordinate shifts for all TCS’s when the Rf goes from 100 to 60.
Fig. 5.
Fig. 5. (a) Test set-up in order to demonstrate the feasibility of tuning the color rendering performance of a spatially variable laser illumination system: 1. Macbeth ColorChecker, 2. Laser projector, 3. Laptop, 4. Spectrometer, 5. Spectral telescope. The Macbeth ColorChecker under (b) static laser diode illumination, (c) tuned laser diode illumination for Rf = 100, and (d) tuned laser diode illumination for Rf = 60.
Fig. 6.
Fig. 6. The Δu'v' and ΔY/YT values (target Rf = 100) as a function of time for (a) the green color patch, when measured with the spectrometer and (b) the orange-yellow color patch, when measured with the hyperspectral camera.
Fig. 7.
Fig. 7. (a) The measured spectral power distribution of the laser projector primaries (for R, G, B values equal to 125 separately). (b) Required radiant flux for the 18 chromatic Macbeth color patches, with the real laser projector, and with the considered spatially variable laser diode illumination system with Rf = 100. (c) The color gamut of the laser projector.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S ( x , y ) ( λ ) = p b S B ( λ ) + p g S G ( λ ) + p r S R ( λ ) .
Φ e = p b + p g + p r [ in Watt ] .
Δ E i = Δ J i 2 + Δ a i 2 + Δ b i 2 ,
R f = 10 × ln ( e ( 100 c f × Δ E ) / 10 + 1 ) with c f = 6 .73 .
R g = 100 × A test / A ref ,
[ X Y Z ]   =   [ X b X g X r Y b Y g Y r Z b Z g Z r ] [ p b p g p r ] ,
[ p b p g p r ] = [ X b X g X r Y b Y g Y r Z b Z g Z r ] 1 [ X Y Z ] .
Δ E = 100 10 ln ( e R f / 10 1 ) c f ,
{ J i ,new = J i a i ,new = a + s i g n ( a ) Δ E i 1 + b 2 / b 2 a 2 a 2 b i ,new = k a i ,new k = a i b i .

Metrics