Abstract

A sapphire derived fiber (SDF) based Fabry-Perot interferometer (FPI) with an etched micro air cavity for strain measurement at high temperatures is proposed. The FPI is formed by splicing a section of SDF between an etched single mode fiber (ESMF) and a capillary. The SDF’s core containing 51.3mol.% aluminum provides the intrinsic Fabry-Perot interferometer cavity with an enhanced fringe contrast through the narrow etched air cavity reflector. Because the different Poisson effects of the cladding and the core have different deformations under axial stress, the transverse strain imposed from the cladding to the core was introduced to the additive model. The strain sensitivity of the FPI was theoretically analyzed and experimentally demonstrated at room temperature. A thermal annealing process was performed to study the stability in high temperatures and to release the residual stress during the sensor’s fabrication. The strain calibration was carried out subsequently from 20℃ to 1000℃. Benefiting from the doping in the core and diffusion in the cladding of the high temperature resistant material $\textrm{A}{\textrm{l}_\textrm{2}}{\textrm{O}_\textrm{3}}$, the proposed sensor was proved to operate well in 950℃ and was also characteristized by a sensitivity of 1.19 pm/µɛ and 1.06 pm/µɛ in the process of loading and unloading strain separately.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer

Z. Wang, H. Liu, Z. Ma, Z. Chen, T. Wang, and F. Pang
Opt. Express 27(20) 27691-27701 (2019)

Crystallization-sapphire-derived-fiber-based Fabry–Perot interferometer for refractive index and high-temperature measurement

Penghao Zhang, Li Zhang, Zissimos P. Mourelatos, and Zhongyu Wang
Appl. Opt. 57(30) 9016-9021 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
    [Crossref]
  2. H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140(6), 1859–1862 (2015).
    [Crossref]
  3. P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
    [Crossref]
  4. X. P. Chen, F. B. Shen, Z. Wang, Z. Huang, and A. B. Wang, “Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor,” Appl. Opt. 45(30), 7760–7766 (2006).
    [Crossref]
  5. Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
    [Crossref]
  6. K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
    [Crossref]
  7. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref]
  8. Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements,” Opt. Express 25(8), 9443–9448 (2017).
    [Crossref]
  9. F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112 (2012).
    [Crossref]
  10. Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
    [Crossref]
  11. C. Lang, Y. Liu, K. Cao, and S. Qu, “Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure,” Opt. Express 26(1), 477–487 (2018).
    [Crossref]
  12. S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
    [Crossref]
  13. Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
    [Crossref]
  14. M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
    [Crossref]
  15. M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
    [Crossref]
  16. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-Derived All-Glass Optical Fibers,” Nat. Photonics 6(9), 627–633 (2012).
    [Crossref]
  17. T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22(22), 26825–26833 (2014).
    [Crossref]
  18. P. H. Zhang, L. Zhang, Z. P. Mourelatos, and Z. Y. Wang, “Crystallization-sapphire-derived-fiber-based Fabry-Perot interferometer for refractive index and high-temperature measurement,” Appl. Opt. 57(30), 9016–9021 (2018).
    [Crossref]
  19. G. Dan, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313 (2015).
    [Crossref]
  20. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
    [Crossref]
  21. P. D. Dragic, J. Ballato, S. Morris, and T. Hawkins, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. B 30(2), 244–250 (2013).
    [Crossref]
  22. M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
    [Crossref]
  23. P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster, “Brillouin scattering properties of lanthano-aluminosilicate optical fiber,” Appl. Opt. 53(25), 5660–5671 (2014).
    [Crossref]
  24. A. Klini, T. David, and E. Bourillot, “Reproducible Optical Fiber Tips for Photon Scanning Tunneling Microscopy with Very Small (<5°) Cone Angle,” J. Lightwave Technol. 16(7), 1220–1227 (1998).
    [Crossref]
  25. R. Bruckner, “Properties and structure ofvitreous silica. II,” J. Non-Cryst. Solids 5(3), 177–216 (1971).
    [Crossref]
  26. H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
    [Crossref]
  27. P. Zhang, H. Yang, Y. Wang, H. Liu, K. S. Lim, D. S. Gunawardena, and H. Ahmad, “Strain measurement at temperatures up to 800 degrees C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers,” Appl. Opt. 56(22), 6073–6078 (2017).
    [Crossref]

2018 (2)

2017 (4)

2016 (1)

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
[Crossref]

2015 (4)

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140(6), 1859–1862 (2015).
[Crossref]

G. Dan, S. J. Mihailov, J. Ballato, and P. D. Dragic, “Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers,” Optica 2(4), 313 (2015).
[Crossref]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

2014 (4)

2013 (1)

2012 (4)

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112 (2012).
[Crossref]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-Derived All-Glass Optical Fibers,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
[Crossref]

2011 (2)

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
[Crossref]

2007 (1)

2006 (1)

2003 (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

1998 (1)

1971 (1)

R. Bruckner, “Properties and structure ofvitreous silica. II,” J. Non-Cryst. Solids 5(3), 177–216 (1971).
[Crossref]

Ahmad, H.

P. Zhang, H. Yang, Y. Wang, H. Liu, K. S. Lim, D. S. Gunawardena, and H. Ahmad, “Strain measurement at temperatures up to 800 degrees C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers,” Appl. Opt. 56(22), 6073–6078 (2017).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Aichele, C.

Ali, M. M.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Araujo, L.

Ballato, A.

Ballato, J.

Bartelt, H.

Bierlich, J.

Bourillot, E.

Bouwmans, G.

Bruckner, R.

R. Bruckner, “Properties and structure ofvitreous silica. II,” J. Non-Cryst. Solids 5(3), 177–216 (1971).
[Crossref]

Cao, K.

Chen, H. F.

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140(6), 1859–1862 (2015).
[Crossref]

Chen, W. P.

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
[Crossref]

Chen, X. P.

Dan, G.

David, T.

Dellith, J.

Deng, H. Y.

Deng, M.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Donlagic, D.

Dragic, P.

Dragic, P. D.

Elsmann, T.

Farrell, G.

Favero, F. C.

Ferreira, M. S.

Finazzi, V.

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-Derived All-Glass Optical Fibers,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Frazao, O.

Frazão, O.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Ghosh, S.

Gunawardena, D. S.

Habisreuther, T.

Hawkins, T.

Huang, M.

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

Huang, Z.

Jorge, P. A. S.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Kido, L.

Klini, A.

Kobelke, J.

Kucera, C.

Lai, M. H.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Lang, C.

Law, P.-C.

Lewis, E.

Li, Z.

Liang, H.

Liao, C.

Liao, X.

Lim, K. S.

P. Zhang, H. Yang, Y. Wang, H. Liu, K. S. Lim, D. S. Gunawardena, and H. Ahmad, “Strain measurement at temperatures up to 800 degrees C using regenerated gratings produced in the highGe-doped and B/Ge co-doped fibers,” Appl. Opt. 56(22), 6073–6078 (2017).
[Crossref]

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Litzkendorf, D.

Liu, H.

Liu, S.

Liu, Y.

C. Lang, Y. Liu, K. Cao, and S. Qu, “Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure,” Opt. Express 26(1), 477–487 (2018).
[Crossref]

Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
[Crossref]

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
[Crossref]

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Lorenz, A.

Mihailov, S. J.

Morris, S.

Mourelatos, Z. P.

Paul, M. C.

Pevec, S.

Pruneri, V.

Qiao, X. G.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Qu, S.

Qu, S. L.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Qu, W. G.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Que, R. Y.

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

Ran, Z. L.

Rao, Y. J.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Z. L. Ran, Y. J. Rao, H. Y. Deng, and X. Liao, “Miniature in-line photonic crystal fiber etalon fabricated by 157 nm laser micromachining,” Opt. Lett. 32(21), 3071–3073 (2007).
[Crossref]

Roriz, P.

Rothhardt, M.

Santos, J. L.

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Schuster, K.

Schwuchow, A.

Shen, F. B.

Tafulo, P. A. R.

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Tang, C. P.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Tang, J.

Tian, K.

Villatoro, J.

Wang, A. B.

Wang, D. N.

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
[Crossref]

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140(6), 1859–1862 (2015).
[Crossref]

Wang, G.

Wang, P.

Wang, Q.

Wang, X.

Wang, Y.

Wang, Y. P.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Wang, Z.

Wang, Z. Y.

Wei, X.

Wondraczek, K.

Wu, J.

Wu, Y.

Xin, Y.

Yang, H.

Yang, H. Z.

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

Yang, K.

Yang, W.

Yazd, N. S.

Yuan, P.

Zhang, L.

Zhang, P.

Zhang, P. H.

Zhang, Y.

Zhao, J.

Zhong, X.

Zhou, J.

Zhu, T.

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Analyst (1)

H. F. Chen, D. N. Wang, and Y. Wang, “Simultaneous strain and temperature sensing using a slightly tapered optical fiber with an inner cavity,” Analyst 140(6), 1859–1862 (2015).
[Crossref]

Appl. Opt. (4)

IEEE Photonics Technol. Lett. (2)

H. Z. Yang, X. G. Qiao, Y. P. Wang, M. M. Ali, M. H. Lai, K. S. Lim, and H. Ahmad, “In-Fiber Gratings for Simultaneous Monitoring Temperature and Strain in Ultrahigh Temperature,” IEEE Photonics Technol. Lett. 27(1), 58–61 (2015).
[Crossref]

M. Deng, C. P. Tang, T. Zhu, and Y. J. Rao, “PCF-Based Fabry–Pérot Interferometric Sensor for Strain Measurement at High Temperatures,” IEEE Photonics Technol. Lett. 23(11), 700–702 (2011).
[Crossref]

Int. J. Solids Struct. (1)

M. Huang, “Stress effects on the performance of optical waveguides,” Int. J. Solids Struct. 40(7), 1615–1632 (2003).
[Crossref]

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (1)

R. Bruckner, “Properties and structure ofvitreous silica. II,” J. Non-Cryst. Solids 5(3), 177–216 (1971).
[Crossref]

J. Opt. (1)

Y. Liu, S. L. Qu, W. G. Qu, and R. Y. Que, “A Fabry–Perot cuboid cavity across the fibre for high-sensitivity strain force sensing,” J. Opt. 16(10), 105401 (2014).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-Derived All-Glass Optical Fibers,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Opt. Commun. (1)

P. A. R. Tafulo, P. A. S. Jorge, J. L. Santos, and O. Frazão, “Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement,” Opt. Commun. 285(6), 1159–1162 (2012).
[Crossref]

Opt. Express (8)

Y. Wu, Y. Zhang, J. Wu, and P. Yuan, “Temperature-insensitive fiber optic Fabry-Perot interferometer based on special air cavity for transverse load and strain measurements,” Opt. Express 25(8), 9443–9448 (2017).
[Crossref]

F. C. Favero, L. Araujo, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Spheroidal Fabry-Perot microcavities in optical fibers for high-sensitivity sensing,” Opt. Express 20(7), 7112 (2012).
[Crossref]

Y. Liu, C. Lang, X. Wei, and S. Qu, “Strain force sensor with ultra-high sensitivity based on fiber inline Fabry-Perot micro-cavity plugged by cantilever taper,” Opt. Express 25(7), 7797–7806 (2017).
[Crossref]

C. Lang, Y. Liu, K. Cao, and S. Qu, “Temperature-insensitive optical fiber strain sensor with ultra-low detection limit based on capillary-taper temperature compensation structure,” Opt. Express 26(1), 477–487 (2018).
[Crossref]

S. Pevec and D. Donlagic, “All-fiber, long-active-length Fabry-Perot strain sensor,” Opt. Express 19(16), 15641–15651 (2011).
[Crossref]

T. Elsmann, A. Lorenz, N. S. Yazd, T. Habisreuther, J. Dellith, A. Schwuchow, J. Bierlich, K. Schuster, M. Rothhardt, L. Kido, and H. Bartelt, “High temperature sensing with fiber Bragg gratings in sapphire-derived all-glass optical fibers,” Opt. Express 22(22), 26825–26833 (2014).
[Crossref]

M. S. Ferreira, P. Roriz, J. Bierlich, J. Kobelke, K. Wondraczek, C. Aichele, K. Schuster, J. L. Santos, and O. Frazao, “Fabry-Perot cavity based on silica tube for strain sensing at high temperatures,” Opt. Express 23(12), 16063–16070 (2015).
[Crossref]

K. Tian, G. Farrell, X. Wang, W. Yang, Y. Xin, H. Liang, E. Lewis, and P. Wang, “Strain sensor based on gourd-shaped single-mode-multimode-single-mode hybrid optical fibre structure,” Opt. Express 25(16), 18885–18896 (2017).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Optica (1)

Sci. Rep. (1)

Y. Liu, D. N. Wang, and W. P. Chen, “Crescent shaped Fabry-Perot fiber cavity for ultra-sensitive strain measurement,” Sci. Rep. 6(1), 38390 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. The scheme diagram of the FPI.
Fig. 2.
Fig. 2. The model of the proposed FPI sensor.
Fig. 3.
Fig. 3. Block diagram of a unit volume of the SDF core in the force mechanical system.
Fig. 4.
Fig. 4. Calculated strain sensitivity of the SDF based FPI as a function of alumina content.
Fig. 5.
Fig. 5. The microscopic image of the sensor.
Fig. 6.
Fig. 6. The reflection spectrum with and without an etched air cavity.
Fig. 7.
Fig. 7. The experimental setup of the FPI for strain measurement at a high temperature.
Fig. 8.
Fig. 8. The FPI sensor responses to the applied strain.
Fig. 9.
Fig. 9. The FPI sensor responses to the temperature.
Fig. 10.
Fig. 10. Wavelength shifts of the FPI sensor for different annealing temperature.
Fig. 11.
Fig. 11. The responses of the FPI sensor to the applied strain at (a)700℃, 800℃, (b)900℃, 950, (c)1000℃.
Fig. 12.
Fig. 12. The sensitivities of loading and unloading strain at each tested temperature.

Tables (2)

Tables Icon

Table 1. Parameters used to calculate the strain sensitivity

Tables Icon

Table 2. The comparison of the highest operation temperature and the strain range

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E 0 ( R 1 + ( 1 η 1 ) ( 1 R 1 ) R 2 e j 2 β L ) ,
I λ = R 1 + ( 1 η 1 ) 2 ( 1 R 1 ) 2 R 2 + 2 ( 1 η 1 ) ( 1 R 1 ) R 1 R 2 cos ( 4 π n SDF L / λ + φ 0 ) ,
4 π n SDF L λ m = ( 2 m + 1 ) π ,
λ d i p = 4 n SDF L 2 m + 1 .
Δ λ d i p = 4 2 m + 1 ( n SDF Δ L + L Δ n SDF ) ,
Δ L = L ε z ,
Δ λ d i p = 4 2 m + 1 ( n SDF L ε z + L Δ n SDF ) = 4 n SDF L 2 m + 1 ( ε z + 1 n SDF Δ n SDF ) .
Δ λ d i p ε z = λ d i p ( 1 + 1 n SDF Δ n SDF ε z ) .
n SDF = m n A l 2 O 3 + ( 1 m ) n Si O 2 ,
ν c o r e = m ν A l 2 O 3 + ( 1 m ) ν Si O 2 ,
ν c l a d d i n g = ν Si O 2 .
( ε OC, σ OC ) = 1 n SDF 3 ( n A l 2 O 3 3 m ( ε O C A l 2 O 3 , σ O C A l 2 O 3 ) + n Si O 2 3 ( 1 m ) ( ε O C Si O 2 , σ O C Si O 2 ) ) ,
p 11 = ε OC + 2 σ OC 1 + 2 ν ,
p 12 = ε OC + 2 ν σ OC 1 2 ν .
ε c o r e , x = ε c o r e , y = ν c o r e ε z ,
ε c l a d d i n g , x = ε c l a d d i n g , y = ν c l a d d i n g ε z ,
Δ n z = 1 2 n SDF 3 ( p 12 ν c o r e ( p 11 + p 12 ) ) ε z .
Δ n x = 1 2 n SDF 3 ( p 12 ν c o r e ( p 11 + p 12 ) ) ( ε c l a d d i n g , x ε c o r e , x ) = 1 2 n SDF 3 ( p 12 ν c o r e ( p 11 + p 12 ) ) ( ν c o r e ν c l a d d i n g ) ε z ,
Δ n y = 1 2 n SDF 3 ( p 11 2 ν c o r e p 12 ) ( ε c l a d d i n g , x ε c o r e , x ) = 1 2 n SDF 3 ( p 11 2 ν c o r e p 12 ) ( ν c o r e ν c l a d d i n g ) ε z .
Δ n SDF = Δ n x + Δ n y + Δ n z .
Δ λ d i p ε = λ d i p { 1 1 2 n SDF 2 ( p 12 ν c o r e ( p 11 + p 12 ) + 1 2 n SDF 2 ( p 12 ν c o r e ( p 11 + p 12 ) + p 11 2 ν c o r e p 12 ) ( ν core ν c l a d d i n g ) } .

Metrics