Abstract

Recyclable coherent random lasers assisted by plasmonic nanoparticles in DCM-PVA thin films are studied. Four DCM-PVA films with different nanoparticles are made, and the radiation characteristics of these random lasers are studied. The results show that the emission spectrum of the DCM-PVA film with Au nanoparticle of 50 nm in diameter is optimal, and its threshold is about 6.53 µJ/pulse. Underlying mechanisms are discussed in detail. Then the DCM-PVA film with Au nanoparticles of 50 nm in diameter is detached from a glass substrate and adhered to different substrates. Coherent random lasers also occur when the sample is based on different substrates. Finally, a method of making samples recyclable is proposed, and the emission spectrum of samples as a function of cycle index is studied. The results show that recyclable coherent random lasers can be realized with this method. This study provides a new way, to the best of our knowledge, to realize recyclable coherent random lasers with low-threshold.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Random lasing assisted by CuSO4 and Au nanoparticles in random gain systems

Zhenzhen Shang, Zhi Tao, and Luogen Deng
Opt. Mater. Express 7(6) 1848-1857 (2017)

Enhanced lasing from organic gain medium by Au nanocube@SiO2 core-shell nanoparticles with optimal size

Shuya Ning, Naming Zhang, Hua Dong, Xun Hou, Fanghui Zhang, and Zhaoxin Wu
Opt. Mater. Express 8(10) 3014-3022 (2018)

Dependence of random laser emission on silver nanoparticle density in PMMA films containing rhodamine 6G

Christian Tolentino Dominguez, Rogério L. Maltez, Roberto M. S. dos Reis, Luciana S. A. de Melo, Cid B. de Araújo, and Anderson S. L. Gomes
J. Opt. Soc. Am. B 28(5) 1118-1123 (2011)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835–840 (1968).
  2. N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  3. D. Wiersma, “The smallest random laser,” Nature 406(6792), 133–135 (2000).
    [Crossref]
  4. D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref]
  5. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
    [Crossref]
  6. B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
    [Crossref]
  7. C. Lee, J. Lin, B. Huang, S. Lin, T. Mo, S. Huang, C. Kuo, and H. Yeh, “Electrically controllable liquid crystal random lasers below the Fréedericksz transition threshold,” Opt. Express 19(3), 2391–2400 (2011).
    [Crossref]
  8. L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
    [Crossref]
  9. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
    [Crossref]
  10. A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
    [Crossref]
  11. H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
    [Crossref]
  12. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
    [Crossref]
  13. H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
    [Crossref]
  14. X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
    [Crossref]
  15. C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
    [Crossref]
  16. T. R. Zhai, Z. Y. Xu, X. F. Wu, Y. M. Wang, F. F. Liu, and X. P. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
    [Crossref]
  17. L. Wang, Y. Wan, L. J. Shi, H. Z. Zhong, and L. G. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
    [Crossref]
  18. L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
    [Crossref]
  19. Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
    [Crossref]
  20. T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
    [Crossref]
  21. X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
    [Crossref]
  22. J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
    [Crossref]
  23. Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
    [Crossref]
  24. Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
    [Crossref]
  25. G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
    [Crossref]
  26. S. T. Li, L. Wang, T. R. Zhai, L. Chen, M. Wang, Y. M. Wang, F. Tong, Y. L. Wang, and X. P. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
    [Crossref]
  27. O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  28. L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [Crossref]
  29. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [Crossref]
  30. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  31. X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
    [Crossref]

2017 (3)

A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
[Crossref]

Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
[Crossref]

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

2016 (5)

S. T. Li, L. Wang, T. R. Zhai, L. Chen, M. Wang, Y. M. Wang, F. Tong, Y. L. Wang, and X. P. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref]

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

T. R. Zhai, Z. Y. Xu, X. F. Wu, Y. M. Wang, F. F. Liu, and X. P. Zhang, “Ultra-thin plasmonic random lasers,” Opt. Express 24(1), 437–442 (2016).
[Crossref]

L. Wang, Y. Wan, L. J. Shi, H. Z. Zhong, and L. G. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref]

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

2015 (3)

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

J. Ziegler, M. Djiango, C. Vidal, C. Hrelescu, and T. A. Klar, “Gold nanostars for random lasing enhancement,” Opt. Express 23(12), 15152–15159 (2015).
[Crossref]

2014 (1)

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

2012 (1)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

2011 (1)

2009 (4)

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

2008 (1)

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

2006 (2)

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14(17), 7737–7744 (2006).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

2005 (2)

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

2004 (1)

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

2001 (2)

D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref]

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

2000 (2)

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

D. Wiersma, “The smallest random laser,” Nature 406(6792), 133–135 (2000).
[Crossref]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

1994 (1)

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835–840 (1968).

An, Y. S.

Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Balachandram, R. M.

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Barna, V.

Bartolino, R.

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Boltasseva, A.

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

Cao, H.

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Chang, S.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Chang, S. H.

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

Chen, J.

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Chen, L.

S. T. Li, L. Wang, T. R. Zhai, L. Chen, M. Wang, Y. M. Wang, F. Tong, Y. L. Wang, and X. P. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref]

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Choi, S. H.

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

Choma, M. A.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Cui, Y.

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Cui, Y. P.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Davidov, D.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

de Araújoc, C. B.

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

De Luca, A.

Deng, L. G.

Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
[Crossref]

L. Wang, Y. Wan, L. J. Shi, H. Z. Zhong, and L. G. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref]

Dice, G. D.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Djiango, M.

Dominguez, C. T.

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

Elezzabia, A. Y.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feng, Y. Y.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Ferjani, S.

Fujita, K.

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Gomes, A. S. L.

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gomes, M. d. A.

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Ho, S. T.

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Hrelescu, C.

Huang, B.

Huang, S.

Joshi, B.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Kildishev, A. V.

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Kim, Y. L.

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Klar, T. A.

Knitter, S.

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

Kuo, C.

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lee, C.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835–840 (1968).

Li, F. J.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Li, S. T.

S. T. Li, L. Wang, T. R. Zhai, L. Chen, M. Wang, Y. M. Wang, F. Tong, Y. L. Wang, and X. P. Zhang, “Plasmonic random lasing in polymer fiber,” Opt. Express 24(12), 12748–12754 (2016).
[Crossref]

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Lin, J.

Lin, S.

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

Liu, B.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Liu, D. H.

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Liu, F. F.

Liu, H. M.

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Lu, Y.

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Lu, Y. Q.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Macedo, Z. S.

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

Meng, X. G.

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Mo, T.

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mujumdar, S.

G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Murai, S.

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Redding, B.

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

Sarkar, A.

A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
[Crossref]

Sauvain, E.

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Scaramuzza, N.

Schatz, G. C.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Shalaev, V. M.

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Sherry, L. J.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Shi, L. J.

Shivakiran Bhaktha, B. N.

A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
[Crossref]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Strangi, G.

Subhashree Ojha, N. N.

A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
[Crossref]

Sun, K.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Tanaka, K.

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Tong, F.

Van Duyne, R. P.

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Versace, C.

Vidal, C.

Wan, Y.

Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
[Crossref]

L. Wang, Y. Wan, L. J. Shi, H. Z. Zhong, and L. G. Deng, “Electrically controllable plasmonic enhanced coherent random lasing from dye-doped nematic liquid crystals containing Au nanoparticles,” Opt. Express 24(16), 17593–17602 (2016).
[Crossref]

Wang, J. Y.

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

Wang, L.

Wang, L. M.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Wang, M.

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Wang, Y.

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Wang, Y. L.

Wang, Y. M.

Wang, Z. X.

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

Wei, Q. H.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Wei, Q. M.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Wiersma, D.

D. Wiersma, “The smallest random laser,” Nature 406(6792), 133–135 (2000).
[Crossref]

Wiersma, D. S.

D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Wu, X. F.

Xu, J. Y.

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

Xu, Z. Y.

Ye, L.

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Ye, L. H.

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Yeh, H.

Yi, G.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

Yu, S. F.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

Zhai, T. R.

Zhang, X. P.

Zhao, C.

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Zhong, H. Z.

Zhou, X. L.

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

Ziegler, J.

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zong, Y. H.

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

Appl. Phys. A (1)

X. L. Zhou, Q. M. Wei, L. M. Wang, B. Joshi, Q. H. Wei, and K. Sun, “Enhanced photoluminescence from gallium arsenide semiconductor coated with Au nanoparticles,” Appl. Phys. A 96(3), 637–641 (2009).
[Crossref]

Appl. Phys. Lett. (5)

G. D. Dice, S. Mujumdar, and A. Y. Elezzabia, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86(13), 131105 (2005).
[Crossref]

O. Popov, A. Zilbershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: Enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84(17), 3241–3243 (2004).
[Crossref]

A. Sarkar, N. N. Subhashree Ojha, and B. N. Shivakiran Bhaktha, “Effect of photonic stop-band on the modes of a weakly scattering DCM-PVA waveguide random laser,” Appl. Phys. Lett. 110(25), 251104 (2017).
[Crossref]

X. G. Meng, K. Fujita, Y. H. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008).
[Crossref]

J. Appl. Phys. (1)

L. Ye, B. Liu, C. Zhao, Y. Wang, Y. Cui, and Y. Lu, “The electrically and magnetically controllable random laser from dye-doped liquid crystals,” J. Appl. Phys. 116(5), 053103 (2014).
[Crossref]

Laser Photonics Rev. (1)

Z. X. Wang, X. G. Meng, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Nanolasers enabled by metallic nanoparticles: from spasers to random lasers,” Laser Photonics Rev. 11(6), 1700212 (2017).
[Crossref]

Laser Phys. Lett. (1)

L. H. Ye, B. Liu, F. J. Li, Y. Y. Feng, Y. P. Cui, and Y. Q. Lu, “The influence of Ag nanoparticles on random laser from dye-doped nematic liquid crystals,” Laser Phys. Lett. 13(10), 105001 (2016).
[Crossref]

Nano Lett. (2)

Z. X. Wang, X. G. Meng, S. H. Choi, S. Knitter, Y. L. Kim, H. Cao, V. M. Shalaev, and A. Boltasseva, “Controlling random lasing with three-dimensional plasmonic nanorod metamaterials,” Nano Lett. 16(4), 2471–2477 (2016).
[Crossref]

L. J. Sherry, S. Chang, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[Crossref]

Nanoscale (2)

T. R. Zhai, J. Chen, L. Chen, J. Y. Wang, L. Wang, D. H. Liu, S. T. Li, H. M. Liu, and X. P. Zhang, “A plasmonic random laser tunable through stretching silver nanowires embedded in a flexible substrate,” Nanoscale 7(6), 2235–2240 (2015).
[Crossref]

C. T. Dominguez, M. d. A. Gomes, Z. S. Macedo, C. B. de Araújoc, and A. S. L. Gomes, “Multi-photon excited coherent random laser emission in ZnO powders,” Nanoscale 7(1), 317–323 (2015).
[Crossref]

Nat. Photonics (2)

B. Redding, M. A. Choma, and H. Cao, “Speckle-free laser imaging using random laser illumination,” Nat. Photonics 6(6), 355–359 (2012).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (4)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[Crossref]

N. M. Lawandy, R. M. Balachandram, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

D. Wiersma, “The smallest random laser,” Nature 406(6792), 133–135 (2000).
[Crossref]

D. S. Wiersma and S. Cavalieri, “A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref]

Opt. Express (6)

Phys. Rev. A (1)

X. G. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79(5), 053817 (2009).
[Crossref]

Phys. Rev. E (1)

H. Cao, J. Y. Xu, S. H. Chang, and S. T. Ho, “Transition from amplified spontaneous emission to laser action in strongly scattering media,” Phys. Rev. E 61(2), 1985–1989 (2000).
[Crossref]

Phys. Rev. Lett. (2)

H. Cao, Y. Ling, J. Y. Xu, and C. Q. Cao, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82(11), 2278–2281 (1999).
[Crossref]

Sci. Rep. (1)

Y. Wan, Y. S. An, and L. G. Deng, “Plasmonic enhanced low-threshold random lasing from dye-doped nematic liquid crystals with TiN nanoparticles in capillary tubes,” Sci. Rep. 7(1), 16185 (2017).
[Crossref]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26(4), 835–840 (1968).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of the samples pumped by a pump stripe.
Fig. 2.
Fig. 2. (a) and (c) The emission spectrum of sample 1 and sample 2 as a function of the pump energy. (b) and (d) The peak intensity and FWHM of corresponding emission spectrum as a function of the pump energy.
Fig. 3.
Fig. 3. (a) The scattering strength of Au nanoparticles with diameters of 50 nm and 10 nm. (b) and (c) The electric field intensity distributions around Au nanoparticles with diameters of 50 nm and 10 nm at the wavelength of 532 nm.
Fig. 4.
Fig. 4. (a) and (c) The emission spectrum of sample 3 and sample 4 as a function of the pump energy. (b) and (d) The peak intensity and FWHM of corresponding emission spectrum as a function of the pump energy.
Fig. 5.
Fig. 5. (a) The scattering strength of Ag nanoparticles with diameters of 50 nm and 10 nm. (b) and (c) The electric field intensity distributions around Ag nanoparticles with diameters of 50 nm and 10 nm at the wavelength of 532 nm.
Fig. 6.
Fig. 6. (a) The emission spectrum of sample 1 as a function of the pump energy, when the glass substrate is removed. (b) The peak intensity and FWHM of corresponding emission spectrum as a function of the pump energy. (c) The photographs of sample 1 adhering to bottles, rulers, books and syringes, respectively. (d) The emission spectrum of sample 1 adhering to different substrates.
Fig. 7.
Fig. 7. (a) Schematic diagram of the recyclable coherent random laser. (b) The emission spectrum of sample 1 as a function of cycle index.

Metrics