Abstract

The measuring accuracy of the fiber optic gyroscope (FOG) for weak signals under very short sampling time is significantly impacted by the quantization error, impeding its application in high-speed measurement and real-time control. In this work, we propose and implement a double-electrode-pair multifunction integrated-optic circuit (MIOC), which contains an additional pair of short electrodes besides the conventional electrode-pair. Taking advantage of the better modulating precision of the additional electrode-pair, the digital feedback is more refined and the quantization error in the FOG output is significantly suppressed. The driving circuits and the control scheme of the proposed MIOC are specially designed for FOGs. Experimental results show that the resolution for extremely small angular rates at short smoothing times is significantly improved. This work provides the potential of the applications in high-speed measuring and controlling systems for high-precision FOGs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope

Yue Zheng, Chunxi Zhang, Lijing Li, Lailiang Song, and Wen Chen
Appl. Opt. 55(17) 4589-4595 (2016)

Analysis of dead zone sources in a closed-loop fiber optic gyroscope

Kyoung-Ho Chong, Woo-Seok Choi, and Kil-To Chong
Appl. Opt. 55(1) 165-170 (2016)

Double closed-loop control of integrated optical resonance gyroscope with mean-square exponential stability

Hui Li, Liying Liu, Zhili Lin, Qiwei Wang, Xiao Wang, and Lishuang Feng
Opt. Express 26(2) 1145-1160 (2018)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).
  2. G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
    [Crossref]
  3. C. Ciminelli, F. Dell’Olio, and M. N. Armenise, Photonics in Space: Advanced Photonic Devices and Systems (World Scientific, 2016).
  4. Y. Paturel and A. Couderette, “High performance Fog: An industrial feedback from mass production,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2015), pp. 1–4.
    [Crossref]
  5. H. C. Lefèvre, “The fiber-optic gyroscope a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” C. R. Phys. 15(10), 851–858 (2014).
    [Crossref]
  6. A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
    [Crossref]
  7. Y. Zheng, C. Zhang, L. Li, L. Song, and W. Chen, “Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope,” Appl. Opt. 55(17), 4589–4595 (2016).
    [Crossref] [PubMed]
  8. “IEEE standard specification format guide and test procedure for single axis interferometric fiber optic gyros,” IEEE-STD-952–1997.
  9. Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
    [Crossref]
  10. H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
    [Crossref]
  11. Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
    [Crossref]
  12. H. Zhang, X. Chen, X. Shu, and C. Liu, “Angular random walk improvement of a fiber-optic gyroscope using an active fiber ring resonator,” Opt. Lett. 44(7), 1793–1796 (2019).
    [Crossref] [PubMed]
  13. B. L. Kantsiper, J. C. Ray, J. W. Hunt, and T. E. Strikwerda, “Autonomous avoidance of structural resonances on the STEREO mission,” in AIAA Guidance Navigation and Control Conference and Exhibit, Hilton Head, USA, 20–23 Aug. 2007.
    [Crossref]
  14. H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
    [Crossref]
  15. D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
    [Crossref]
  16. M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc., J Optoelectron. 135(2), 85–91 (1988).
    [Crossref]
  17. P. G. Suchoski, T. K. Findakly, and F. J. Leonberger, “Stable low-loss proton-exchanged LiNbO3 waveguide devices with no electro-optic degradation,” Opt. Lett. 13(11), 1050–1052 (1988).
    [Crossref] [PubMed]
  18. S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electrooptic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol. 17(5), 843–847 (1999).
    [Crossref]
  19. A. Yariv, Quantum Electronic (Wiley, 1989).
  20. K. K. Wong, Properties of Lithium Niobate (IEE, 2002).

2019 (1)

2018 (1)

Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
[Crossref]

2017 (1)

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

2016 (2)

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Y. Zheng, C. Zhang, L. Li, L. Song, and W. Chen, “Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope,” Appl. Opt. 55(17), 4589–4595 (2016).
[Crossref] [PubMed]

2014 (2)

H. C. Lefèvre, “The fiber-optic gyroscope a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” C. R. Phys. 15(10), 851–858 (2014).
[Crossref]

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

2013 (1)

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

2012 (1)

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

1999 (1)

1991 (1)

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

1988 (2)

Aksarin, S. M.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Arditty, H. J.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Armenise, M. N.

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc., J Optoelectron. 135(2), 85–91 (1988).
[Crossref]

Arrizon, A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Boronachin, A.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Chang, S. J.

Chen, W.

Chen, X.

Couderette, A.

Y. Paturel and A. Couderette, “High performance Fog: An industrial feedback from mass production,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2015), pp. 1–4.
[Crossref]

Findakly, T. K.

Ho, W.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Honthaas, J.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

Lefèvre, H.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

Lefèvre, H. C.

H. C. Lefèvre, “The fiber-optic gyroscope a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” C. R. Phys. 15(10), 851–858 (2014).
[Crossref]

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Leonberger, F. J.

Li, L.

Li, L. J.

Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
[Crossref]

Lin, Y. B.

Liu, C.

Liu, J. F.

Martin, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Mead, D.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Morisse, J.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Mosor, S.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Muhtubaev, A. B.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Napolitano, F.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

Paturel, Y.

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

Y. Paturel and A. Couderette, “High performance Fog: An industrial feedback from mass production,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2015), pp. 1–4.
[Crossref]

Pogorelaya, D. A.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Qiu, T.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Salit, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, G. A.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Sanders, S. J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Schreiber, K. U.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Shu, X.

Shulepov, V. A.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Simonpiétri, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Smiciklas, M.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Smolovik, M. A.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Song, L.

Strandjord, L. K.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Strigalev, V. E.

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

Suchoski, P. G.

Tkachenko, A.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Tsai, C. L.

Velikoseltsev, A.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Vivenot, P.

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

Wang, W. S.

Wells, J. R.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Wu, J.

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Yankovsky, A.

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Zhang, C.

Zhang, C. X.

Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
[Crossref]

Zhang, H.

Zheng, Y.

Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
[Crossref]

Y. Zheng, C. Zhang, L. Li, L. Song, and W. Chen, “Loop gain stabilizing with an all-digital automatic-gain-control method for high-precision fiber-optic gyroscope,” Appl. Opt. 55(17), 4589–4595 (2016).
[Crossref] [PubMed]

Appl. Opt. (1)

C. R. Phys. (1)

H. C. Lefèvre, “The fiber-optic gyroscope a century after Sagnac’s experiment: The ultimate rotation-sensing technology?” C. R. Phys. 15(10), 851–858 (2014).
[Crossref]

Gyroscopy Navigation (1)

Y. Paturel, J. Honthaas, H. Lefèvre, and F. Napolitano, “One nautical mile per month FOG-based strapdown inertial navigation system: A dream already within reach?” Gyroscopy Navigation 5(1), 1–8 (2014).
[Crossref]

IEE Proc., J Optoelectron. (1)

M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc., J Optoelectron. 135(2), 85–91 (1988).
[Crossref]

J. Lightwave Technol. (1)

J. Phys. Conf. (1)

D. A. Pogorelaya, M. A. Smolovik, S. M. Aksarin, V. E. Strigalev, V. A. Shulepov, and A. B. Muhtubaev, “The study of response of electro-optic phase modulator based on LiNbO3 with the aim of improving the accuracy of fiberoptic gyroscope,” J. Phys. Conf. 917(7), 072002 (2017).
[Crossref]

J. Seismol. (1)

A. Velikoseltsev, K. U. Schreiber, A. Yankovsky, J. R. Wells, A. Boronachin, and A. Tkachenko, “On the application of fiber optic gyroscopes for detection of seismic rotations,” J. Seismol. 16(4), 623–637 (2012).
[Crossref]

Opt. Commun. (1)

Y. Zheng, C. X. Zhang, and L. J. Li, “Influences of optical-spectrum errors on excess relative intensity noise in a fiber-optic gyroscope,” Opt. Commun. 410, 504–513 (2018).
[Crossref]

Opt. Fiber Technol. (1)

H. C. Lefèvre, “The fiber-optic gyroscope: Challenges to become the ultimate rotation-sensing technology,” Opt. Fiber Technol. 19(6), 828–832 (2013).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (2)

H. C. Lefèvre, P. Martin, J. Morisse, P. Simonpiétri, P. Vivenot, and H. J. Arditty, “High dynamic range fiber gyro with all-digital signal processing,” Proc. SPIE 1367, 72–80 (1991).
[Crossref]

G. A. Sanders, S. J. Sanders, L. K. Strandjord, T. Qiu, J. Wu, M. Smiciklas, D. Mead, S. Mosor, A. Arrizon, W. Ho, and M. Salit, “Fiber optic gyro development at Honeywell,” Proc. SPIE 9852, 985207 (2016).
[Crossref]

Other (7)

C. Ciminelli, F. Dell’Olio, and M. N. Armenise, Photonics in Space: Advanced Photonic Devices and Systems (World Scientific, 2016).

Y. Paturel and A. Couderette, “High performance Fog: An industrial feedback from mass production,” in Proceedings of IEEE International Symposium on Inertial Sensors and Systems (IEEE, 2015), pp. 1–4.
[Crossref]

“IEEE standard specification format guide and test procedure for single axis interferometric fiber optic gyros,” IEEE-STD-952–1997.

H. C. Lefèvre, The Fiber-Optic Gyroscope (Artech House, 2014).

B. L. Kantsiper, J. C. Ray, J. W. Hunt, and T. E. Strikwerda, “Autonomous avoidance of structural resonances on the STEREO mission,” in AIAA Guidance Navigation and Control Conference and Exhibit, Hilton Head, USA, 20–23 Aug. 2007.
[Crossref]

A. Yariv, Quantum Electronic (Wiley, 1989).

K. K. Wong, Properties of Lithium Niobate (IEE, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Designs of (a) the conventional MIOC and (b) the double-electrode-pair MIOC, where le represents the length of the primary electrodes and k denotes the ratio between the lengths of the primary and additional electrodes.
Fig. 2
Fig. 2 The fabricated double-electrode-pair MIOC, where Vπ-p≈3V and k≈8.
Fig. 3
Fig. 3 Configurations of data bits in DACs (a) for the conventional MIOC and (b) for the double-electrode-pair MIOC.
Fig. 4
Fig. 4 Driving circuits for the double-electrode-pair MIOC.
Fig. 5
Fig. 5 Decomposition of four-state waveform into two modulation chains based on time division.
Fig. 6
Fig. 6 Detection of Vπ errors for the primary and additional electrode-pairs.
Fig. 7
Fig. 7 Quantization in FOG output with the conventional MIOC and the double-electrode-pair MIOC, respectively.
Fig. 8
Fig. 8 The results are the external interference acting on a testing platform measured by a high-precision FOG with (a) the conventional MIOC and (b) the double-electrode-pair MIOC, respectively.

Tables (1)

Tables Icon

Table 1 Correspondences among digital number, phase difference and analog voltage

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Ω Q = λc 2πLD Δ φ Q = λc 2πLD 2π 2 N ,
Δφ= π n e 3 γ 33 ε l e Γ λ 0 ,
V π = λ 0 G e n e 3 r 33 l e Γ ,
Inmode 1:{ P S11 = P 0 2 [ 1+cos( Δ φ s +Δ φ f A φ 1 ) ] P S21 = P 0 2 [ 1+cos( Δ φ s +Δ φ f A φ 2 ) ] P S31 = P 0 2 [ 1+cos( Δ φ s +Δ φ f +A φ 1 ) ] P S41 = P 0 2 [ 1+cos( Δ φ s +Δ φ f +A φ 2 ) ] De m 1 = P S41 P S31 + P S21 P S11 = P 0 [ cos( A φ 2 )cos( A φ 1 ) ] ,
Inmode 2:{ P S12 = P 0 2 [ 1+cos( Δ φ s +Δ φ f φ 1 ) ] P S22 = P 0 2 [ 1+cos( Δ φ s +Δ φ f B φ 2 ) ] P S32 = P 0 2 [ 1+cos( Δ φ s +Δ φ f + φ 1 ) ] P S42 = P 0 2 [ 1+cos( Δ φ s +Δ φ f +B φ 2 ) ] De m 2 = P S42 P S32 + P S22 P S12 = P 0 [ cos( B φ 2 )cos( φ 1 ) ] .

Metrics