Abstract

The dream of physico-chemists to control molecular reactions with light beyond electronic excitations pushes the development of laser pulse shaping capabilities in the mid-infrared (MIR) spectral range. Here, we present a compact optical parametric amplifier platform for the generation and shaping of MIR laser pulses in the wavelength range between 8 μm and 15 μm. Opportunities for judiciously tailoring the electromagnetic waveform are investigated, demonstrating light field control with a spectral resolution of 59 GHz at a total spectral bandwidth of 5 THz. In experiments focusing on spectral amplitude manipulation these parameters result in a time window of 1.8 ps available for shaping the temporal pulse envelope and a phase modulation resolution of 100 mrad for several picosecond delays.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Shaping and amplification of wavelength-tunable mid-infrared femtosecond pulses generated by intra-pulse difference-frequency mixing with spectral focusing

Yuki Yamaguchi, Ryohei Hida, Takakazu Suzuki, Fumihiro Isa, Kenta Yoshikiyo, Leo Fujii, Hirofumi Nemoto, and Fumihiko Kannari
J. Opt. Soc. Am. B 35(12) C1-C7 (2018)

Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses

Sang-Hee Shim, David B. Strasfeld, and Martin T. Zanni
Opt. Express 14(26) 13120-13130 (2006)

Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 µm

Robert A. Kaindl, Matthias Wurm, Klaus Reimann, Peter Hamm, Andrew M. Weiner, and Michael Woerner
J. Opt. Soc. Am. B 17(12) 2086-2094 (2000)

References

  • View by:
  • |
  • |
  • |

  1. D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
    [Crossref] [PubMed]
  2. H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
    [Crossref]
  3. J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
    [Crossref]
  4. C. H. Reynolds, D. Ringe, and K. M. Merz, Drug Design: Structure- and Ligand-based Approaches (Cambridge University, 2010).
  5. D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
    [Crossref] [PubMed]
  6. E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
    [Crossref] [PubMed]
  7. T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
    [Crossref] [PubMed]
  8. C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
    [Crossref] [PubMed]
  9. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
    [Crossref] [PubMed]
  10. D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
    [Crossref] [PubMed]
  11. A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
    [Crossref] [PubMed]
  12. S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
    [Crossref]
  13. S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
    [Crossref] [PubMed]
  14. L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
    [Crossref]
  15. H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
    [Crossref]
  16. A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
    [Crossref] [PubMed]
  17. A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
    [Crossref] [PubMed]
  18. S.-H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
    [Crossref] [PubMed]
  19. T. A. A. Oliver, “Recent advances in multidimensional ultrafast spectroscopy,” R. Soc. open sci. 5, 171425 (2018).
    [Crossref] [PubMed]
  20. T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133 (2002).
    [Crossref]
  21. S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express 14, 13120–13130 (2006).
    [Crossref] [PubMed]
  22. M. Tsubouchi and T. Momose, “Pulse shaping and its characterization of mid-infrared femtosecond pulses: Toward coherent control of molecules in the ground electronic states,” Opt. Commun. 282, 3757–3764 (2009).
    [Crossref]
  23. R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, and M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010).
    [Crossref] [PubMed]
  24. A. Cartella, S. Bonora, M. Först, G. Cerullo, A. Cavalleri, and C. Manzoni, “Pulse shaping in the mid-infrared by a deformable mirror,” Opt. Lett. 39, 1485–1488 (2014).
    [Crossref] [PubMed]
  25. A. Sell, A. Leitenstorfer, and R. Huber, “Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm,” Opt. Lett. 33, 2767–2769 (2008).
    [Crossref] [PubMed]
  26. D. N. Nikogosyan, Nonlinear Optical Crystals (Springer Science+Business Media, Inc., 2005).
  27. R. A. Kaindl, M. Wurm, K. Reimann, P. Hamm, A. M. Weiner, and M. Woerner, “Generation, shaping, and characterization of intense femtosecond pulses tunable from 3 to 20 μm,” J. Opt. Soc. Am. B 17, 2086–2094 (2000).
    [Crossref]
  28. J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
    [Crossref]
  29. C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, “Generation and complete characterization of intense mid-infrared ultrashort pulses,” J. Opt. Soc. Am. B 23, 332–340 (2006).
    [Crossref]
  30. M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2,” Opt. Express 23, 2730–2736 (2015).
    [Crossref] [PubMed]
  31. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
    [Crossref]
  32. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [Crossref]
  33. C. W. Hillegas, J. X. Tull, D. Goswami, D. Strickland, and W. S. Warren, “Femtosecond laser pulse shaping by use of microsecond radio-frequency pulses,” Opt. Lett. 19, 737–739 (1994).
    [Crossref] [PubMed]
  34. A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
    [Crossref]
  35. B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
    [Crossref]
  36. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
    [Crossref] [PubMed]
  37. M. A. Dugan, J. X. Tull, and W. S. Warren, “High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 2348–2358 (1997).
    [Crossref]
  38. K. F. Lee, K. J. Kubarych, A. Bonvalet, and M. Joffre, “Characterization of mid-infrared femtosecond pulses [invited],” J. Opt. Soc. Am. B 25, 54–62 (2008).
    [Crossref]
  39. D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): Phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
    [Crossref] [PubMed]

2018 (4)

J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
[Crossref]

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

T. A. A. Oliver, “Recent advances in multidimensional ultrafast spectroscopy,” R. Soc. open sci. 5, 171425 (2018).
[Crossref] [PubMed]

2017 (2)

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
[Crossref] [PubMed]

2015 (3)

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

M. Beutler, I. Rimke, E. Büttner, P. Farinello, A. Agnesi, V. Badikov, D. Badikov, and V. Petrov, “Difference-frequency generation of ultrashort pulses in the mid-IR using Yb-fiber pump systems and AgGaSe2,” Opt. Express 23, 2730–2736 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (1)

A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
[Crossref] [PubMed]

2012 (2)

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

2010 (4)

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

R. Maksimenka, P. Nuernberger, K. F. Lee, A. Bonvalet, J. Milkiewicz, C. Barta, M. Klima, T. Oksenhendler, P. Tournois, D. Kaplan, and M. Joffre, “Direct mid-infrared femtosecond pulse shaping with a calomel acousto-optic programmable dispersive filter,” Opt. Lett. 35, 3565–3567 (2010).
[Crossref] [PubMed]

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

2009 (5)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

M. Tsubouchi and T. Momose, “Pulse shaping and its characterization of mid-infrared femtosecond pulses: Toward coherent control of molecules in the ground electronic states,” Opt. Commun. 282, 3757–3764 (2009).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

S.-H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref] [PubMed]

D. Pestov, V. V. Lozovoy, and M. Dantus, “Multiple independent comb shaping (MICS): Phase-only generation of optical pulse sequences,” Opt. Express 17, 14351–14361 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (1)

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (1)

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

2004 (1)

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

2003 (1)

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

2002 (2)

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133 (2002).
[Crossref]

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

2000 (2)

1997 (1)

1994 (1)

Abild-Pedersen, F.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Agnesi, A.

Ahmed, A. A.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Alexandrou, A.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

Altoè, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Badikov, D.

Badikov, V.

Barta, C.

Bashan, A.

D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
[Crossref] [PubMed]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Bellini, M.

Beutler, M.

Beye, M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Bonora, S.

Bonvalet, A.

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Brida, D.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Buriak, J. M.

J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
[Crossref]

Büttner, E.

Cartella, A.

Cavalleri, A.

Cerullo, G.

A. Cartella, S. Bonora, M. Först, G. Cerullo, A. Cavalleri, and C. Manzoni, “Pulse shaping in the mid-infrared by a deformable mirror,” Opt. Lett. 39, 1485–1488 (2014).
[Crossref] [PubMed]

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Chatel, B.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Chenel, A.

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

Cheung, I. W.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Choi, K.-S.

J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
[Crossref]

Corkum, P. B.

C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, “Generation and complete characterization of intense mid-infrared ultrashort pulses,” J. Opt. Soc. Am. B 23, 332–340 (2006).
[Crossref]

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Dakovski, G. L.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Dantus, M.

Daoud, H.

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

de Vivie-Riedle, R.

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

Debnath, A.

A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
[Crossref] [PubMed]

Dell’Angela, M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Desouter-Lecomte, M.

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

Dive, G.

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

Dugan, M. A.

Falvo, C.

A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
[Crossref] [PubMed]

Farinello, P.

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

Fidder, H.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Föhlisch, A.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Först, M.

Fraser, J. M.

C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, “Generation and complete characterization of intense mid-infrared ultrashort pulses,” J. Opt. Soc. Am. B 23, 332–340 (2006).
[Crossref]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

Fuß, W.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

Garavelli, M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Gladh, J.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Gollub, C.

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

Goswami, D.

Hamm, P.

Hänsch, T. W.

Hantschmann, M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Heyne, K.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Hieke, F.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Hillegas, C. W.

Huber, R.

Izmaylov, A. F.

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

Joffre, M.

Joubert-Doriol, L.

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

Kaindl, R. A.

Kaplan, D.

Kaya, S.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Keefer, D.

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

Klima, M.

Kompa, K. L.

Kompa, K.-L.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

Kössl, F.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Kowalewski, M.

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

Kozich, V.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Kubarych, K. J.

Kühn, D.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Kühn, O.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Kukura, P.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

LaRue, J.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Lausten, R.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[Crossref]

Lee, K. F.

Lee, S. K.

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

Légaré, F.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Leitenstorfer, A.

Li, W.

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

Likforman, J. P.

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Likforman, J.-P.

Lozovoy, V. V.

Maksimenka, R.

Manzoni, C.

A. Cartella, S. Bonora, M. Först, G. Cerullo, A. Cavalleri, and C. Manzoni, “Pulse shaping in the mid-infrared by a deformable mirror,” Opt. Lett. 39, 1485–1488 (2014).
[Crossref] [PubMed]

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Martin, J.-L.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

Mathies, R. A.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Matzov, D.

D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
[Crossref] [PubMed]

Meier, C.

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

Mercurio, G.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Merz, K. M.

C. H. Reynolds, D. Ringe, and K. M. Merz, Drug Design: Structure- and Ligand-based Approaches (Cambridge University, 2010).

Milkiewicz, J.

Miller, R. J. D.

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

Minitti, M. P.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Mitra, A.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Moeller, S. P.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Momose, T.

M. Tsubouchi and T. Momose, “Pulse shaping and its characterization of mid-infrared femtosecond pulses: Toward coherent control of molecules in the ground electronic states,” Opt. Commun. 282, 3757–3764 (2009).
[Crossref]

Monmayrant, A.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Moore, C. B.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

Motzkus, M.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133 (2002).
[Crossref]

Ng, M. L.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Nibbering, E. T.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals (Springer Science+Business Media, Inc., 2005).

Nilsson, A.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Nordlund, D.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Nørskov, J. K.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Nuernberger, P.

Öberg, H.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Ogasawara, H.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Oksenhendler, T.

Oliver, T. A. A.

T. A. A. Oliver, “Recent advances in multidimensional ultrafast spectroscopy,” R. Soc. open sci. 5, 171425 (2018).
[Crossref] [PubMed]

Orlandi, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Öström, H.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Persson, M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Pestov, D.

Petrov, V.

Pettersson, L. G. M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Pines, E.

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Polli, D.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Proch, D.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133 (2002).
[Crossref]

Reimann, K.

Reynolds, C. H.

C. H. Reynolds, D. Ringe, and K. M. Merz, Drug Design: Structure- and Ligand-based Approaches (Cambridge University, 2010).

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Rimke, I.

Ringe, D.

C. H. Reynolds, D. Ringe, and K. M. Merz, Drug Design: Structure- and Ligand-based Approaches (Cambridge University, 2010).

Rott, F.

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

Schlegel, H. B.

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

Schlotter, W. F.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Sell, A.

Sellberg, J. A.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Shim, S.-H.

S.-H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref] [PubMed]

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express 14, 13120–13130 (2006).
[Crossref] [PubMed]

Spillane, K. M.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Stensitzki, T.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Stolow, A.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[Crossref]

Strasfeld, D. B.

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express 14, 13120–13130 (2006).
[Crossref] [PubMed]

Strickland, D.

Suits, A. G.

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

Sussman, B. J.

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[Crossref]

Thallmair, S.

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

Tomasello, G.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Toro, C.

J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
[Crossref]

Tournois, P.

Tsubouchi, M.

M. Tsubouchi and T. Momose, “Pulse shaping and its characterization of mid-infrared femtosecond pulses: Toward coherent control of molecules in the ground electronic states,” Opt. Commun. 282, 3757–3764 (2009).
[Crossref]

Tull, J. X.

Turner, J. J.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Ventalon, C.

C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, “Generation and complete characterization of intense mid-infrared ultrashort pulses,” J. Opt. Soc. Am. B 23, 332–340 (2006).
[Crossref]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

Villeneuve, D. M.

C. Ventalon, J. M. Fraser, J.-P. Likforman, D. M. Villeneuve, P. B. Corkum, and M. Joffre, “Generation and complete characterization of intense mid-infrared ultrashort pulses,” J. Opt. Soc. Am. B 23, 332–340 (2006).
[Crossref]

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

Vos, M. H.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

Warren, W. S.

Weber, S.

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

Weiner, A. M.

Weingart, O.

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Windhorn, L.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

Witte, T.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

T. Witte, D. Zeidler, D. Proch, K. L. Kompa, and M. Motzkus, “Programmable amplitude- and phase-modulated femtosecond laser pulses in the mid-infrared,” Opt. Lett. 27, 131–133 (2002).
[Crossref]

Woerner, M.

Wolf, M.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Wurm, M.

Wurth, W.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Xin, H.

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Yang, Y.

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Yeston, J. S.

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

Yonath, A.

D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
[Crossref] [PubMed]

Zanni, M. T.

S.-H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref] [PubMed]

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, and M. T. Zanni, “Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses,” Opt. Express 14, 13120–13130 (2006).
[Crossref] [PubMed]

Zeidler, D.

Annu. Rev. Biochem. (1)

D. Matzov, A. Bashan, and A. Yonath, “A bright future for antibiotics?” Annu. Rev. Biochem. 86, 567–583 (2017).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

E. T. Nibbering, H. Fidder, and E. Pines, “Ultrafast chemistry: Using time-resolved vibrational spectroscopy for interrogation of structural dynamics,” Annu. Rev. Phys. Chem. 56, 337–367 (2005).
[Crossref] [PubMed]

Appl. Phys. B (2)

J. M. Fraser, I. W. Cheung, F. Légaré, D. M. Villeneuve, J. P. Likforman, M. Joffre, and P. B. Corkum, “High-energy sub-picosecond pulse generation from 3 to 20 μm,” Appl. Phys. B 74, 153–156 (2002).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97, 561–574 (2009).
[Crossref]

Chem. Mater. (1)

J. M. Buriak, C. Toro, and K.-S. Choi, “Chemistry of materials for water splitting reactions,” Chem. Mater. 30, 7325–7327 (2018).
[Crossref]

Chem. Phys. (1)

H. Daoud, L. Joubert-Doriol, A. F. Izmaylov, and R. J. D. Miller, “Exploring vibrational ladder climbing in vibronic coupling models: Toward experimental observation of a geometric phase signature of a conical intersection,” Chem. Phys. 515, 28–35 (2018).
[Crossref]

J. Chem. Phys. (3)

A. Chenel, C. Meier, G. Dive, and M. Desouter-Lecomte, “Optimal control of a Cope rearrangement by coupling the reaction path to a dissipative bath or a second active mode,” J. Chem. Phys. 142, 024307 (2015).
[Crossref] [PubMed]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[Crossref] [PubMed]

L. Windhorn, J. S. Yeston, T. Witte, W. Fuß, M. Motzkus, D. Proch, K.-L. Kompa, and C. B. Moore, “Getting ahead of IVR: A demonstration of mid-infrared induced molecular dissociation on a sub-statistical time scale,” J. Chem. Phys. 119, 641–645 (2003).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. B (2)

A. Monmayrant, S. Weber, and B. Chatel, “A newcomer’s guide to ultrashort pulse shaping and characterization,” J. Phys. B 43, 103001 (2010).
[Crossref]

S. Thallmair, D. Keefer, F. Rott, and R. de Vivie-Riedle, “Simulating the control of molecular reactions via modulated light fields: from gas phase to solution,” J. Phys. B 50, 082001 (2017).
[Crossref]

J. Phys. Chem. A (2)

A. Debnath, C. Falvo, and C. Meier, “State-selective excitation of the CO stretch in carboxyhemoglobin by mid-IR laser pulse shaping: A theoretical investigation,” J. Phys. Chem. A 117, 12884–12888 (2013).
[Crossref] [PubMed]

A. Chenel, G. Dive, C. Meier, and M. Desouter-Lecomte, “Control in a dissipative environment: The example of a Cope rearrangement,” J. Phys. Chem. A 116, 11273–11282 (2012).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (1)

S. K. Lee, A. G. Suits, H. B. Schlegel, and W. Li, “A reaction accelerator: Mid-infrared strong field dissociation yields mode-selective chemistry,” J. Phys. Chem. Lett. 3, 2541–2547 (2012).
[Crossref] [PubMed]

Nat. Chem. (1)

T. Stensitzki, Y. Yang, V. Kozich, A. A. Ahmed, F. Kössl, O. Kühn, and K. Heyne, “Acceleration of a ground-state reaction by selective femtosecond-infrared-laser-pulse excitation,” Nat. Chem. 10, 126–131 (2018).
[Crossref] [PubMed]

Nature (1)

D. Polli, P. Altoè, O. Weingart, K. M. Spillane, C. Manzoni, D. Brida, G. Tomasello, G. Orlandi, P. Kukura, R. A. Mathies, M. Garavelli, and G. Cerullo, “Conical intersection dynamics of the primary photoisomerization event in vision,” Nature 467, 440–443 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

M. Tsubouchi and T. Momose, “Pulse shaping and its characterization of mid-infrared femtosecond pulses: Toward coherent control of molecules in the ground electronic states,” Opt. Commun. 282, 3757–3764 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Phys. Chem. Chem. Phys. (2)

C. Gollub, M. Kowalewski, S. Thallmair, and R. de Vivie-Riedle, “Chemoselective quantum control of carbonyl bonds in Grignard reactions using shaped laser pulses,” Phys. Chem. Chem. Phys. 12, 15780–15787 (2010).
[Crossref] [PubMed]

S.-H. Shim and M. T. Zanni, “How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and Vis spectroscopies via pulse shaping,” Phys. Chem. Chem. Phys. 11, 748–761 (2009).
[Crossref] [PubMed]

Phys. Rev. A (1)

B. J. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: Considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[Crossref]

Phys. Rev. Lett. (1)

D. B. Strasfeld, S.-H. Shim, and M. T. Zanni, “Controlling vibrational excitation with shaped mid-IR pulses,” Phys. Rev. Lett. 99, 038102 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101, 13216–13220 (2004).
[Crossref] [PubMed]

R. Soc. open sci. (1)

T. A. A. Oliver, “Recent advances in multidimensional ultrafast spectroscopy,” R. Soc. open sci. 5, 171425 (2018).
[Crossref] [PubMed]

Science (1)

H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).
[Crossref]

Other (2)

C. H. Reynolds, D. Ringe, and K. M. Merz, Drug Design: Structure- and Ligand-based Approaches (Cambridge University, 2010).

D. N. Nikogosyan, Nonlinear Optical Crystals (Springer Science+Business Media, Inc., 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Overview of the compact laser setup. The near-infrared pump laser pulse is converted to the targeted mid-infrared (MIR) spectral range in a series of optical parametric amplifiers (OPAs). White light generation (WLG), and difference-frequency generation (DFG) are used in several steps. Some optics, such as beamsplitters and delay-adjustment stages, are shown schematically.
Fig. 2
Fig. 2 (a) Series of MIR spectra generated with the OPA setup. The generated wavelength range can be shifted by adjustment of phase-matching. Artefacts are still visible at around 8 μm, emerging from the beam-splitting pellicle used in the Fourier-transform IR (FTIR) spectrometer and CO2 absorption in air is observed at 15 μm. (b) Spectral bandwidth of the respective spectra shown in Fig. 2(a). The AOM pulse shaper can transmit a certain spectral bandwidth, shown as a dash-dotted line, refer to Fig. 3.
Fig. 3
Fig. 3 The sketched pulse shaping setup consists of the so called 4f configuration, where the acousto-optic modulator mask is placed in the Fourier plane. The arbitrary waveform generator (AWG), radio frequency (RF) amplifier, and RF transducer generate an acoustic transmissive diffraction grating in the Ge-crystal. Modulation of the spatially dispersed light effectively leads to a temporal shaping of the transmitted laser pulse. Lenses and Ge crystal are 50.8 mm optics, focal length f = 200 mm.
Fig. 4
Fig. 4 Basic pulse shapes are simulated, shown in spectral, temporal and time-frequency distribution. From left to right: spectral intensity I(ν) including spectral phase ϕ(ν); electric field in the time domain; and Wigner function. (a) and (b) Effects of Taylor expansion terms of the spectral phase ϕ ( ω ) = 1 2 ϕ ( 2 ) ω 2 + 1 6 ϕ ( 3 ) ω 3 (dashed, ϕ(2) and ϕ(3)); (c) and (d) Effects of sinusoidal modulation of the complex spectral amplitude with decreasing modulation period Δνc; (e) and (f) Shift of sinusoidal amplitude shaping mask ∝ |cos(2πννc) + Δφ| with a flat phase (gray line in spectrum) and its effect on CEP of pulses in a pulse train. The pulse train/double pulses demonstrate the reciprocal relationship between spectral modulation and temporal features.
Fig. 5
Fig. 5 Control of pulse separation in a pulse train. Transform limited electric fields ETL are reconstructed from comb-shaped spectra (see inset, gray lines represent the unmodified spectrum, comb period Δνc). The comb spectra generate pulse trains used to sample the wings of the shaping window, a Lorentzian shape shown as gray lines. The expected positions of satellite pulses are indicated by the gray dashed lines. Gray dots and error bars show expected positions according to periodicity in the spectra. Bracketed values show the averaged temporal position including standard deviation.
Fig. 6
Fig. 6 Relative carrier-envelope phase (CEP) control within pulse trains. Figures 6(a) and 6(b) display electric fields of main and satellite peaks of pulse trains; similar to the theoretical graphs given in Figs. 4(e) and 4(f). The graph insets highlight the CEP for various positions of a comb shaped mask, which is shifted across the Fourier plane of the 4f-configuration shaper setup. The according amount of shift of the comb mask is written above the graph lines, in units of one period of the comb pattern Δφ = cs2π rad. The gray dots and line in the inset of Fig. 6(b) depicts the shift in CEP and an according fit. A resolution of better than 100 mrad of CEP relative to the central peak is derived for the transform limited electric fields.

Tables (1)

Tables Icon

Table 1 Properties of the Pulse Shaper Used at a Central Wavelength of 10.8 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E TL ( t ) Re ( 𝒯 1 { I ( ν ) exp [ i 2 π ϕ ( ν ) ] } ) ,
E ˜ ( ω ) 𝒯 [ E ˜ ( t ) ] E ˜ ( ω Δ ω 0 ) = 𝒯 [ e i Δ ω 0 t E ˜ ( t ) ] .

Metrics