Abstract

Lasing-based sensors have several advantages over fluorescent devices, specifically related to the high light intensity and narrow mode linewidth that can improve the speed and accuracy of the sensor performance. In this work, a microcapillary-based lasing sensor is demonstrated, in which the lasing wavelengths are sensitive to the surface binding of specific materials. In order to achieve this, we utilized lasing into the “star” and “triangle” modes of a conventional microcapillary and tracked the mode positions after the deposition of a polyelectrolyte tri-layer and the subsequent amide binding of carboxy-functionalized polystyrene microspheres. While the lasing mode spectrum becomes increasingly complicated by the addition of the surface layers, careful mode selection can be used to monitor the layer-by-layer surface binding in a mechanically and optically robust device. For polystyrene microspheres, the detection limits were 9.75 nM based upon the lasing mode shift, which compares favorably with fluorescence-based devices. The methods presented in this work could readily be extended to other surface binding schemes and lasing wavelengths, showing that capillary microlasers could be used for many potential applications that capitalize on stable lasing-based detection methods.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Protein biosensing with fluorescent microcapillaries

S. Lane, P. West, A. François, and A. Meldrum
Opt. Express 23(3) 2577-2590 (2015)

Refractometric sensing with fluorescent-core microcapillaries

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum
Opt. Express 19(22) 21540-21551 (2011)

Lasing of whispering gallery modes in optofluidic microcapillaries

Alexandre François, Nicolas Riesen, Kirsty Gardner, Tanya M. Monro, and Al Meldrum
Opt. Express 24(12) 12466-12477 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
    [Crossref]
  2. G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO2 gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
    [Crossref]
  3. A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
    [Crossref]
  4. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [Crossref]
  5. H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
    [Crossref]
  6. J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
    [Crossref]
  7. E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
    [Crossref]
  8. H. Y. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. D. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
    [Crossref]
  9. V. Zamora, M. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering- gallery modes of thin capillaries,” Opt. Express 15(19), 12011–12016 (2007).
    [Crossref]
  10. I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [Crossref]
  11. C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
    [Crossref]
  12. H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
    [Crossref]
  13. Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum dot coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30(1), 51–56 (2013).
    [Crossref]
  14. A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
    [Crossref]
  15. T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
    [Crossref]
  16. Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
    [Crossref]
  17. T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
    [Crossref]
  18. M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
    [Crossref]
  19. A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
    [Crossref]
  20. L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
    [Crossref]
  21. L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
    [Crossref]
  22. X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
    [Crossref]
  23. S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
    [Crossref]
  24. G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
    [Crossref]
  25. K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
    [Crossref]
  26. A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
    [Crossref]
  27. Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
    [Crossref]
  28. S. F. Wondimu, M. Hippler, C. Hussal, A. Hofmann, S. Krammer, J. Lahann, H. Kalt, W. Freude, and C. Koos, “Robust label-free biosensing using microdisk laser arrays with on-chip references,” Opt. Express 26(3), 3161–3173 (2018).
    [Crossref]
  29. T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
    [Crossref]
  30. A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
    [Crossref]
  31. A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
    [Crossref]
  32. A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
    [Crossref]
  33. Y. C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809–815 (2016).
    [Crossref]
  34. H.-J. Moon and D.-Y. Kang, “Strongly enhanced mode selection in a thin dielectric-coated layered microcavity laser,” Opt. Lett. 32(11), 1554–1556 (2007).
    [Crossref]
  35. W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
    [Crossref]
  36. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
    [Crossref]
  37. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).
    [Crossref]
  38. S. A. Greenberg, “The depolymerization of silica in sodium hydroxide solutions,” J. Phys. Chem. 61(7), 960–965 (1957).
    [Crossref]
  39. S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
    [Crossref]
  40. G. Decher and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
    [Crossref]
  41. G. Hlawacek and A. Gölzhäuser, Helium Ion Microscopy, Helium Ion Microscopy (2016), pp. 1–526.
  42. J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
    [Crossref]
  43. G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
    [Crossref]
  44. C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
    [Crossref]
  45. Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
    [Crossref]
  46. A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
    [Crossref]

2019 (1)

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

2018 (3)

S. F. Wondimu, M. Hippler, C. Hussal, A. Hofmann, S. Krammer, J. Lahann, H. Kalt, W. Freude, and C. Koos, “Robust label-free biosensing using microdisk laser arrays with on-chip references,” Opt. Express 26(3), 3161–3173 (2018).
[Crossref]

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
[Crossref]

2017 (2)

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref]

2016 (6)

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO2 gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
[Crossref]

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

Y. C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809–815 (2016).
[Crossref]

2015 (4)

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref]

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

2014 (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

2013 (5)

2012 (1)

2011 (3)

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

2010 (3)

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
[Crossref]

2009 (2)

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[Crossref]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

2008 (2)

2007 (3)

2006 (2)

I. M. White, H. Oveys, and X. D. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[Crossref]

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

2003 (1)

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

2001 (1)

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

2000 (1)

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

1997 (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

1992 (1)

G. Decher and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[Crossref]

1965 (1)

1957 (1)

S. A. Greenberg, “The depolymerization of silica in sodium hydroxide solutions,” J. Phys. Chem. 61(7), 960–965 (1957).
[Crossref]

Afshar V, S.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Aktary, M.

Aktas, O.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

Andres, M. V.

Andrés, M. V.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Baaske, M. D.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Bailey, R. C.

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

Bayindir, M.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

Behrens, S. H.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

Beier, H. T.

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[Crossref]

Bianucci, P.

Blomberg, E.

Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
[Crossref]

Chatterley, M.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Cheben, P.

Chen, M. S.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Chen, Q.

Chen, Y. C.

Cheung, K. C.

Chrostowski, L.

Clements, W. R.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Cote, G. L.

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[Crossref]

Cuisinier, F. J. G.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Dahint, R.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
[Crossref]

Dale, P. S.

Decher, G.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

G. Decher and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[Crossref]

Delâge, A.

Densmore, A.

Diez, M.

Díez, A.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Donzella, V.

Dumeige, Y.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Eisemann, K.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Fan, H. B.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Fan, H. L.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Fan, L.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Fan, X.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Y. C. Chen, Q. Chen, and X. Fan, “Lasing in blood,” Optica 3(8), 809–815 (2016).
[Crossref]

Fan, X. D.

Feldoto, Z.

Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
[Crossref]

Feron, P.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Flueckiger, J.

Foreman, M. R.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Francois, A.

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
[Crossref]

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

François, A.

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref]

Freude, W.

Gardner, K.

Gergely, C.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Gimeno, B.

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

V. Zamora, M. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering- gallery modes of thin capillaries,” Opt. Express 15(19), 12011–12016 (2007).
[Crossref]

Goldberg, A. F.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Gölzhäuser, A.

G. Hlawacek and A. Gölzhäuser, Helium Ion Microscopy, Helium Ion Microscopy (2016), pp. 1–526.

Gong, Q.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Greenberg, S. A.

S. A. Greenberg, “The depolymerization of silica in sodium hydroxide solutions,” J. Phys. Chem. 61(7), 960–965 (1957).
[Crossref]

Grier, D. G.

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

Grist, S. M.

Gu, X. D.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Hall, J. M. M.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

He, L.

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Himmelhaus, M.

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
[Crossref]

Hippler, M.

Hlawacek, G.

G. Hlawacek and A. Gölzhäuser, Helium Ion Microscopy, Helium Ion Microscopy (2016), pp. 1–526.

Hoffmann, P.

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
[Crossref]

Hofmann, A.

Horvath, C.

Huet, V.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Huseyinoglu, E.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

Hussal, C.

Janz, S.

Ji, H.

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Jiang, X.

Jiang, X. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Kalt, H.

Kang, D.-Y.

Kirk, J. T.

Koos, C.

Krammer, S.

Ladam, G.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Lahann, J.

Lane, S.

Lapointe, J.

Le, T.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

Le Cren, E.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Li, B. B.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Li, H.

Ligler, F. S.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Liu, F. C.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
[Crossref]

Liu, S.

Liu, Y.

Lopinski, G.

Luchansky, M. S.

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

Maleki, L.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

Malitson, I. H.

Manchee, C. P. K.

Marsiglio, F.

McClellan, M. S.

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

McFarlane, S.

McKinnon, R.

Meissner, K. E.

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[Crossref]

Meldrum, A.

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref]

Y. Zhi, J. Valenta, and A. Meldrum, “Structure of whispering gallery mode spectrum of microspheres coated with fluorescent silicon quantum dots,” J. Opt. Soc. Am. B 30(11), 3079–3085 (2013).
[Crossref]

Y. Zhi, T. Thiessen, and A. Meldrum, “Silicon quantum dot coated microspheres for microfluidic refractive index sensing,” J. Opt. Soc. Am. B 30(1), 51–56 (2013).
[Crossref]

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
[Crossref]

Mi, G.

Michely, L.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Mischki, T.

Monro, T. M.

A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
[Crossref]

Moon, H.-J.

Morrish, W.

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

Mortier, M.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Nguyen, T. K.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Nicholls, S. J.

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

Oveys, H.

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Ozgur, E.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

Post, E.

Price, R. R.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Rasoloniaina, A.

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Ratner, D. M.

Reynolds, T.

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

Riesen, N.

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Rowland, K. J.

Savchenkov, A. A.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

Schaaf, P.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Schauer, C. L.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Schmid, J. H.

Schmidt, S. A.

Schmitt, J.

G. Decher and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[Crossref]

Schoen, P. E.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Schwefel, H. G. L.

A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
[Crossref]

Senger, B.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Shao, L.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Shi, W.

Silverstone, J. W.

Steier, W. H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

Stobie, S.

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

Stoltz, B. M.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Su, J.

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Suter, J. D.

Talebi Fard, S.

Tazawa, H.

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

Thiessen, T.

Toren, P.

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

Turvey, M. E.

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

Valenta, J.

Van, V.

Varga, I.

Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
[Crossref]

Veinot, J. G. C.

Voegel, J. C.

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

Vollmer, F.

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Waldron, P.

Wang, W.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Wang, Y.

Washburn, A. L.

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

Weller, A.

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
[Crossref]

Welsh, E. R.

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

West, P.

White, I. M.

Wondimu, S. F.

Xia, C. Q.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Xiao, Y. F.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Xu, D.-X.

Xu, X.

Yang, J.

Yang, L.

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Yu, X. C.

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Zamora, V.

Zhao, G.

Zhao, L.

Zhi, Y.

Zhou, D. W.

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Zhu, H. Y.

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Adv. Mater. (1)

L. Shao, X. F. Jiang, X. C. Yu, B. B. Li, W. R. Clements, F. Vollmer, W. Wang, Y. F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013).
[Crossref]

Anal. Chem. (1)

T. Reynolds, A. Francois, N. Riesen, M. E. Turvey, S. J. Nicholls, P. Hoffmann, and T. M. Monro, “Dynamic self-referencing approach to whispering gallery mode biosensing and its application to measurement within undiluted serum,” Anal. Chem. 88(7), 4036–4040 (2016).
[Crossref]

Ann. Biomed. Eng. (1)

H. T. Beier, G. L. Cote, and K. E. Meissner, “Whispering gallery mode biosensors consisting of quantum dot-embedded microspheres,” Ann. Biomed. Eng. 37(10), 1974–1983 (2009).
[Crossref]

Appl. Phys. B: Lasers Opt. (1)

A. Weller, F. C. Liu, R. Dahint, and M. Himmelhaus, “Whispering gallery mode biosensors in the low-Q limit,” Appl. Phys. B: Lasers Opt. 90(3-4), 561–567 (2008).
[Crossref]

Appl. Phys. Lett. (2)

A. Francois and M. Himmelhaus, “Whispering gallery mode biosensor operated in the stimulated emission regime,” Appl. Phys. Lett. 94(3), 031101 (2009).
[Crossref]

A. François, N. Riesen, H. Ji, S. Afshar V, and T. M. Monro, “Polymer based whispering gallery mode laser for biosensing applications,” Appl. Phys. Lett. 106(3), 031104 (2015).
[Crossref]

Biomacromolecules (1)

G. Ladam, C. Gergely, B. Senger, G. Decher, J. C. Voegel, P. Schaaf, and F. J. G. Cuisinier, “Protein interactions with polyelectrolyte multilayers: Interactions between human serum albumin and polystyrene sulfonate/polyallylamine multilayers,” Biomacromolecules 1(4), 674–687 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

T. Le, A. A. Savchenkov, H. Tazawa, W. H. Steier, and L. Maleki, “Polymer optical waveguide vertically coupled to high-Q whispering gallery resonators,” IEEE Photonics Technol. Lett. 18(7), 859–861 (2006).
[Crossref]

J. Chem. Phys. (1)

S. H. Behrens and D. G. Grier, “The charge of glass and silica surfaces,” J. Chem. Phys. 115(14), 6716–6721 (2001).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

S. A. Greenberg, “The depolymerization of silica in sodium hydroxide solutions,” J. Phys. Chem. 61(7), 960–965 (1957).
[Crossref]

Langmuir (1)

Z. Feldoto, I. Varga, and E. Blomberg, “Influence of salt and rinsing protocol on the structure of PAH/PSS polyelectrolyte multilayers,” Langmuir 26(22), 17048–17057 (2010).
[Crossref]

Laser Photonics Rev. (1)

T. Reynolds, N. Riesen, A. Meldrum, X. Fan, J. M. M. Hall, T. M. Monro, and A. François, “Fluorescent and lasing whispering gallery mode microresonators: an emerging paradigm for sensing applications,” Laser Photonics Rev. 11(2), 1600265 (2017).
[Crossref]

Light: Sci. Appl. (1)

J. Su, A. F. Goldberg, and B. M. Stoltz, “Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators,” Light: Sci. Appl. 5(1), e16001 (2016).
[Crossref]

Nat. Nanotechnol. (1)

M. D. Baaske, M. R. Foreman, and F. Vollmer, “Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform,” Nat. Nanotechnol. 9(11), 933–939 (2014).
[Crossref]

Opt. Commun. (1)

H. B. Fan, X. D. Gu, D. W. Zhou, H. L. Fan, L. Fan, and C. Q. Xia, “Confined whispering-gallery mode in silica double-toroid microcavities for optical sensing and trapping,” Opt. Commun. 434, 97–103 (2019).
[Crossref]

Opt. Express (14)

S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express 21(7), 7994–8006 (2013).
[Crossref]

K. J. Rowland, A. Francois, P. Hoffmann, and T. M. Monro, “Fluorescent polymer coated capillaries as optofluidic refractometric sensors,” Opt. Express 21(9), 11492–11505 (2013).
[Crossref]

H. Y. Zhu, I. M. White, J. D. Suter, P. S. Dale, and X. D. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15(15), 9139–9146 (2007).
[Crossref]

V. Zamora, M. Diez, M. V. Andres, and B. Gimeno, “Refractometric sensor based on whispering- gallery modes of thin capillaries,” Opt. Express 15(19), 12011–12016 (2007).
[Crossref]

D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
[Crossref]

A. Meldrum, P. Bianucci, and F. Marsiglio, “Modification of ensemble emission rates and luminescence spectra for inhomogeneously broadened distributions of quantum dots coupled to optical microcavities,” Opt. Express 18(10), 10230–10246 (2010).
[Crossref]

C. P. K. Manchee, V. Zamora, J. W. Silverstone, J. G. C. Veinot, and A. Meldrum, “Refractometric sensing with fluorescent-core microcapillaries,” Opt. Express 19(22), 21540–21551 (2011).
[Crossref]

J. W. Silverstone, S. McFarlane, C. P. K. Manchee, and A. Meldrum, “Ultimate resolution for refractometric sensing with whispering gallery mode microcavities,” Opt. Express 20(8), 8284–8295 (2012).
[Crossref]

S. Lane, P. West, A. François, and A. Meldrum, “Protein biosensing with fluorescent microcapillaries,” Opt. Express 23(3), 2577–2590 (2015).
[Crossref]

G. Mi, C. Horvath, M. Aktary, and V. Van, “Silicon microring refractometric sensor for atmospheric CO2 gas monitoring,” Opt. Express 24(2), 1773–1780 (2016).
[Crossref]

A. Francois, N. Riesen, K. Gardner, T. M. Monro, and A. Meldrum, “Lasing of whispering gallery modes in optofluidic microcapillaries,” Opt. Express 24(12), 12466–12477 (2016).
[Crossref]

X. Xu, X. Jiang, G. Zhao, and L. Yang, “Phone-sized whispering-gallery microresonator sensing system,” Opt. Express 24(23), 25905–25910 (2016).
[Crossref]

Y. Wang, H. Li, L. Zhao, Y. Liu, S. Liu, and J. Yang, “Tapered optical fiber waveguide coupling to whispering gallery modes of liquid crystal microdroplet for thermal sensing application,” Opt. Express 25(2), 918–926 (2017).
[Crossref]

S. F. Wondimu, M. Hippler, C. Hussal, A. Hofmann, S. Krammer, J. Lahann, H. Kalt, W. Freude, and C. Koos, “Robust label-free biosensing using microdisk laser arrays with on-chip references,” Opt. Express 26(3), 3161–3173 (2018).
[Crossref]

Opt. Lett. (2)

Optica (1)

Photonics Nanostruct. Fundam. Appl. (1)

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Cylindrical optical microcavities: basic properties and sensor applications,” Photonics Nanostruct. Fundam. Appl. 9(2), 149–158 (2011).
[Crossref]

Phys. Rev. A (1)

L. He, Ş. K. Özdemir, J. Zhu, and L. Yang, “Ultrasensitive detection of mode splitting in active optical microcavities,” Phys. Rev. A 82(5), 053810 (2010).
[Crossref]

Phys. Rev. Appl. (1)

W. Morrish, N. Riesen, S. Stobie, A. François, and A. Meldrum, “Geometric resonances for high-sensitivity microfluidic lasing sensors,” Phys. Rev. Appl. 10(5), 051001 (2018).
[Crossref]

Proc. SPIE (1)

A. François, H. G. L. Schwefel, and T. M. Monro, “Using the lasing threshold in whispering gallery mode resonators for refractive index sensing,” Proc. SPIE 10518, 30 (2018).
[Crossref]

Procedia Eng. (1)

A. L. Washburn, M. S. Luchansky, M. S. McClellan, and R. C. Bailey, “Label-free, multiplexed biomolecular analysis using arrays of silicon photonic microring resonators,” Procedia Eng. 25, 63–66 (2011).
[Crossref]

Prog. Colloid Polym. Sci. (1)

G. Decher and J. Schmitt, “Fine-tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes,” Prog. Colloid Polym. Sci. 89, 160–164 (1992).
[Crossref]

Sci. Rep. (2)

E. Ozgur, P. Toren, O. Aktas, E. Huseyinoglu, and M. Bayindir, “Label-free biosensing with high selectivity in complex media using microtoroidal optical resonators,” Sci. Rep. 5(1), 13173 (2015).
[Crossref]

A. Rasoloniaina, V. Huet, T. K. Nguyen, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, and P. Feron, “Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification,” Sci. Rep. 4(1), 4023 (2015).
[Crossref]

Science (1)

G. Decher, “Fuzzy nanoassemblies: Toward layered polymeric multicomposites,” Science 277(5330), 1232–1237 (1997).
[Crossref]

Thin Solid Films (1)

C. L. Schauer, M. S. Chen, M. Chatterley, K. Eisemann, E. R. Welsh, R. R. Price, P. E. Schoen, and F. S. Ligler, “Color changes in chitosan and poly(allyl amine) films upon metal binding,” Thin Solid Films 434(1-2), 250–257 (2003).
[Crossref]

Other (1)

G. Hlawacek and A. Gölzhäuser, Helium Ion Microscopy, Helium Ion Microscopy (2016), pp. 1–526.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Diagram of the experimental setup. A representative star mode is illustrated in the capillary glass wall. The call-out on the right side illustrates the PE trilayer and a PS microsphere bound to the final PAH layer.
Fig. 2.
Fig. 2. Diagram illustrating star mode and triangle modes in a layered capillary coating PE layer. (a) An example star mode (orange; N = 5) and a triangle mode superimposed in green. (b) Ray paths illustrating Type 1 (red) and Type 2 (green) triangle modes.
Fig. 3.
Fig. 3. (a) Simulated FDTD spectra for a capillary of radii r= 125 and R = 160 µm for two different refractive indices in the channel (1.3300 vs. 1.3303). The star modes are marked by the black dots, and the triangle mode envelopes are represented by the Gaussian fits as shown by the blue and purple lines and described by the mean value, µ. (b) A star mode resonance at a wavelength of 610.97 nm. The blue lines represent the ray diagrams shown in Fig. 2, while the corresponding field intensities are shown on a scale from light green to black.
Fig. 4.
Fig. 4. The lasing spectra of the initial blank capillary (Experimental Step 2), after PE trilayer deposition (Step 6) and after PS microsphere binding on the PE trilayer (Step 8).
Fig. 5.
Fig. 5. Zoom-in of part of the emission spectrum after the synthesis steps shown in the legend. The triangle modes (blue lines) are found by Gaussian fits of the star mode maxima.
Fig. 6.
Fig. 6. (a) Discrete Fourier transform of the spectrum of a capillary with 125-µm inner radius and 160-µm outer radius with PAH-PSS bilayers. The red and orange Fourier components indicate the phases used to calculate the wavelength shift of the triangle modes and star modes, respectively. (b) Corresponding sensorgram for 1-bilayer, 2-bilayers and 3-bilayers of PE functionalization.
Fig. 7.
Fig. 7. (a) Sensorgram showing the Type-2 triangle (red points) and star (orange points) mode shifts after the PE bilayer and subsequent microsphere binding. The inset shows a representative HIM image of a group of microspheres bound to the surface. The overall surface coverage was 22%. (b) Sensorgram for a “blank” run in which the PE trilayer was not deposited (red points indicate star and blue points indicate triangle modes). A small shift was observed, suggesting that some microspheres can bind non-specifically to the capillary wall. The inset shows a representative HIM image, in which a few microspheres can indeed be found in the capillary channel. The error bars represent the standard deviation of the data in each section.
Fig. 8.
Fig. 8. (a) Sensorgrams showing the mode shifts after exposure to the PE tri-layer and a subsequent PS microsphere binding step, using 0.05 mg/mL (purple), 0.5 mg/mL (blue), 1 mg/mL (yellow) and 2 mg/mL (red) microsphere solutions. (b) Plot of the magnitude of the total Type-2 triangle mode shifts after PS binding, as a function of the concentrations of 50 nm PS microsphere solution. The slope yields a sensitivity of 15 pm/nM. The error bars in (a) and (b) represent the standard deviation of the data for the four different concentrations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δ f s t a r = c n 2 sin θ 3 2 N ( n 1 n 2 r 1 sin ψ sin θ 3 + r 1 n 2 2 sin α + r 3 n 3 2 sin ϕ )
Δ f t r i a n g l e = c n 2 sin θ 3 2 ( υ r 3 n 3 2 sin ϕ u r 1 n 1 n 2 sin ψ sin θ 3 u r 1 n 2 2 sin α ) ,
λ s t a r = 2 N m ( n 1 r 1 sin ψ + n 2 r 1 sin α sin θ 3 + r 3 n 3 2 sin ϕ n 2 sin θ 3 )
λ t r i a n g l e = 2 m ( υ r 3 n 3 2 sin ϕ n 2 sin θ 3 u r 1 n 1 sin ψ u r 1 n 2 sin α sin θ 3 ) ,
θ 3   =   Arcsin ( n 1 r 1 n 2 r 2 cos ψ ) ,
α   =   Arcsin ( n 1 n 2 cos ψ ) θ 3 ,
ϕ   =   Arcsin ( n 2 n 3 sin θ 3 ) Arcsin ( r 2 n 2 r 3 n 3 sin θ 3 ) .
Δ O P L t r i a n g l e 2 = 2 ( r 3 n 3 2 sin ϕ n 2 sin θ 3 r 1 n 1 sin ψ r 1 n 2 sin a sin θ 3 ) .
Δ O P L s t a r = 2 N ( n 1 r 1 sin ψ + n 2 r 1 sin α sin θ 3 + r 3 n 3 2 sin ϕ n 2 sin θ 3 ) .

Metrics