Abstract

High-performance GeSn multiple-quantum-well (MQW) photodiode is demonstrated on a 200 mm Ge-on-insulator (GeOI) photonics platform for the first time. Both GeSn MQW active layer stack and Ge layer (top Ge layer of GeOI after bonding) were grown using a single epitaxy step on a standard (001)-oriented Si substrate (donor wafer) using a reduced pressure chemical vapor deposition (RPCVD). Direct wafer bonding and layer transfer technique were then employed to transfer the GeSn MQW device layers and Ge layer to a 200 mm SiO2-terminated Si handle substrate. The surface illuminated GeSn MQW photodiode realized on this platform exhibits an ultra-low leakage current density of 25 mA/cm2 at room temperature and an enhanced photo sensitivity at 2 μm of 30 mA/W as compared to a GeSn MQW photodiode on Si at 2 μm. The underlying GeOI platform enables monolithic integration of a complete suite of photonics devices operating at 2 μm band, including GeOI strip waveguides, grating couplers, micro-ring modulators, Mach–Zehnder interferometer modulators, etc. In addition, Ge CMOS circuits can also be realized on this common platform using a “photonic-first and electronic-last” processing approach. In this work, as prototype demonstration, both Ge p- and n-channel fin field-effect transistors (FinFETs) were realized on GeOI simultaneously with decent static electrical characteristics. Subthreshold swings of 150 and 99 mV/decade at |VD| = 0.1 V and drive currents of 91 and 10.3 μA/μm at |VG-VTH| = 1 V and |VD| = 0.75 V were achieved for p- and n-FinFETs, respectively. This works illustrates the potential of integrating GeSn (as photo detection material) on GeOI platform for Ge-based optoelectronics integrated circuits (OEICs) targeting communication applications at 2 μm band.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate

Shengqiang Xu, Wei Wang, Yi-Chiau Huang, Yuan Dong, Saeid Masudy-Panah, Hong Wang, Xiao Gong, and Yee-Chia Yeo
Opt. Express 27(4) 5798-5813 (2019)

Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits

Jian Kang, Mitsuru Takenaka, and Shinichi Takagi
Opt. Express 24(11) 11855-11864 (2016)

High-performance GeSn photodetector and fin field-effect transistor (FinFET) on an advanced GeSn-on-insulator platform

Wei Wang, Dian Lei, Yi-Chiau Huang, Kwang Hong Lee, Wan-Khai Loke, Yuan Dong, Shengqiang Xu, Chuan Seng Tan, Hong Wang, Soon-Fatt Yoon, Xiao Gong, and Yee-Chia Yeo
Opt. Express 26(8) 10305-10314 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Group IV photonics: Enabling 2 μm communications,” Nat. Photonics 9(6), 358–359 (2015).
    [Crossref]
  2. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, S. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in ECOC (2014), pp. 5.20.
  3. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  4. E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
    [Crossref]
  5. V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26(10), 13106–13121 (2018).
    [Crossref] [PubMed]
  6. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
    [Crossref] [PubMed]
  7. G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
    [Crossref]
  8. M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
    [Crossref] [PubMed]
  9. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
    [Crossref]
  10. J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
    [Crossref] [PubMed]
  11. Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
    [Crossref]
  12. W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
    [Crossref]
  13. J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
    [Crossref]
  14. J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
    [Crossref] [PubMed]
  15. J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Design and characterization of Ge passive waveguide components on Ge-on-Insulator for mid-infrared photonics,” in OFC (2016), p. Tu3E.4.
  16. H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
    [Crossref]
  17. A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
    [Crossref] [PubMed]
  18. M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
    [Crossref]
  19. B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
    [Crossref]
  20. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
    [Crossref]
  21. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
    [Crossref]
  22. S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
    [Crossref] [PubMed]
  23. M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
    [Crossref]
  24. J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
    [Crossref] [PubMed]
  25. D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7%〈 100〉 uniaxial tensile strain,” Photon. Res. 2(3), A8–A13 (2014).
    [Crossref]
  26. D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24(2), 1358–1367 (2016).
    [Crossref] [PubMed]
  27. S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
    [Crossref] [PubMed]
  28. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
    [Crossref] [PubMed]
  29. H. Wu, W. Luo, M. Si, J. Zhang, H. Zhou, and P. D. Ye, “Deep sub-100 nm Ge CMOS devices on Si with the recessed S/D and channel,” in IEEE IEDM (2014), pp. 16.7.1–16.7.4.
  30. H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in IEEE VLSI (2015), pp. T58–T59.
  31. H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
    [Crossref]
  32. P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
    [Crossref]
  33. K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
    [Crossref]
  34. S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High Speed (f3-dB above 10 GHz) Photo Detection at Two-micron-wavelength Realized by GeSn/Ge Multiple-quantum-well Photodiode on a 300 mm Si Substrate,” in IEEE IEDM (2018), pp. 23.2.1–23.2.4.
  35. T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
    [Crossref] [PubMed]
  36. H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
    [Crossref]
  37. M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
    [Crossref]
  38. J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
    [Crossref]
  39. Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
    [Crossref]
  40. J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
    [Crossref]
  41. M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
    [Crossref] [PubMed]
  42. S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
    [Crossref] [PubMed]
  43. J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).
  44. M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
    [Crossref] [PubMed]
  45. H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
    [Crossref]
  46. M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
    [Crossref]
  47. H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
    [Crossref]
  48. Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
    [Crossref] [PubMed]
  49. Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
    [Crossref] [PubMed]
  50. Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
    [Crossref] [PubMed]
  51. W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
    [Crossref]
  52. M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
    [Crossref]
  53. Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photon. Res. 5(6), 702–709 (2017).
    [Crossref]
  54. B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
    [Crossref] [PubMed]

2019 (1)

2018 (6)

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26(10), 13106–13121 (2018).
[Crossref] [PubMed]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref] [PubMed]

B.-J. Huang, J.-H. Lin, H. H. Cheng, and G.-E. Chang, “GeSn resonant-cavity-enhanced photodetectors on silicon-on-insulator platforms,” Opt. Lett. 43(6), 1215–1218 (2018).
[Crossref] [PubMed]

2017 (7)

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photon. Res. 5(6), 702–709 (2017).
[Crossref]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
[Crossref] [PubMed]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

2016 (8)

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24(2), 1358–1367 (2016).
[Crossref] [PubMed]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
[Crossref] [PubMed]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

2015 (4)

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

R. Soref, “Group IV photonics: Enabling 2 μm communications,” Nat. Photonics 9(6), 358–359 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

2014 (8)

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7%〈 100〉 uniaxial tensile strain,” Photon. Res. 2(3), A8–A13 (2014).
[Crossref]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

2013 (2)

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

2012 (1)

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

2011 (4)

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

2010 (3)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

2009 (1)

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

2006 (2)

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
[Crossref]

2005 (1)

1980 (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Ackert, J. J.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Alam, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Alam, S.-U.

Alloatti, L.

Atabaki, A.

Bao, S.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photon. Res. 5(6), 702–709 (2017).
[Crossref]

Bechler, S.

Beeler, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Benamara, M.

Bhargava, P.

Bigo, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Birks, T.

Bowers, J.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Bowers, J. E.

Brendel, C. E.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Brongersma, M. L.

Buca, D.

Buckley, S.

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Callahan, P. G.

Cao, Q.

Cao, W.

Cecchi, S.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Chaisakul, P.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Chang, G.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Chang, G.-E.

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Cheng, B.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Cheng, H.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Cheng, H. H.

Chrastina, D.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Chung, H.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Claeys, C.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Cohen, O.

Cong, H.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Corzine, S.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Couny, F.

Crozat, P.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

D’Costa, V. R.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

De Jaeger, B.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Dentai, A.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Desurvire, E.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Dong, Y.

Dorogan, V. G.

Du, W.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Dwivedi, S.

Echlin, M. P.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Eneman, G.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Evans, P.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Faist, J.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Fang, A.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Fang, A. W.

Farr, L.

Fenrich, C. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Fitzgerald, E. A.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Frey, B. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
[Crossref]

Frigerio, J.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Gardes, F.

Geiger, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Gollhofer, M.

Gong, X.

Gonzalez, M.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Gossard, A. C.

Grant, J. M.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Grant, P. C.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Grützmacher, D.

Guo, X.

Gupta, S.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Hagan, D.

Harris, J. S.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Hartmann, J. M.

Hon, N. K.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

Hu, E. L.

Hu, W.

Huang, B.-J.

Huang, D.

Huang, Y.-C.

Huang, Y.-H.

Huo, Y.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Ikonic, Z.

Isella, G.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Jalali, B.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

Jessop, P. E.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Jones, R.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

Joyner, C.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Jung, D.

Jung, Y.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Kamins, T. I.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Kang, J.

Kang, J.-H.

Kaschel, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kasper, E.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Kato, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kazmierski, C.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kennedy, M.

Kennedy, M. J.

Kim, D.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Kim, Y.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Kish, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Kittler, M.

Knight, J.

Knights, A.

Knights, A. P.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Koch, B.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Koerner, R.

Körner, R.

Kostecki, K.

Kouvetakis, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Lau, K. M.

Lee, K. H.

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref] [PubMed]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photon. Res. 5(6), 702–709 (2017).
[Crossref]

Lee, S. Y.

Lee, S.-Y.

Lei, D.

Lelarge, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Lepage, G.

Leviton, D. B.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
[Crossref]

Li, B.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Li, H.

Y.-H. Huang, G.-E. Chang, H. Li, and H. H. Cheng, “Sn-based waveguide p-i-n photodetector with strained GeSn/Ge multiple-quantum-well active layer,” Opt. Lett. 42(9), 1652–1655 (2017).
[Crossref] [PubMed]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Li, K.

Li, Q.

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Liang, D.

Y. Wan, J. Norman, Q. Li, M. Kennedy, D. Liang, C. Zhang, D. Huang, Z. Zhang, A. Y. Liu, A. Torres, D. Jung, A. C. Gossard, E. L. Hu, and J. E. Bowers, “1.3 μm submilliamp threshold quantum dot micro-lasers on Si,” Optica 4(8), 940–944 (2017).
[Crossref]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liang, G.

Lim, S. L.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Lin, J.-H.

Lin, S.

Lin, Y.

Littlejohns, C. G.

Liu, A. Y.

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Liu, L.

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Liu, S.

Liu, Z.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Loh, W.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Loke, W. K.

Loke, W.-K.

Loo, R.

Madison, T. J.

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
[Crossref]

Malik, A.

Mangan, B.

Mantl, S.

Marcadet, X.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Margetis, J.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Marris-Morini, D.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Mashanov, V.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Mashanov, V. I.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Mashanovich, G. Z.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

Mason, M.

Masudy-Panah, S.

Mathews, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Mazur, Y. I.

Mehta, N.

Menéndez, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Menéndéz, J.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Michel, J.

Min, D.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Minamisawa, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Moazeni, S.

Morea, M.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Mortazavi, M.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Muneeb, M.

Mussler, G.

Muthiah, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Nagarajan, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Nakazawa, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Nam, D.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7%〈 100〉 uniaxial tensile strain,” Photon. Res. 2(3), A8–A13 (2014).
[Crossref]

Naseem, H. A.

Nedeljkovic, M.

Norman, J.

Oehme, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Onwukaeme, C.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Osipowicz, T.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Paniccia, M. J.

Park, H.

Pavanello, F.

Payne, D.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Peacock, A. C.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Peng, Y.-H.

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

Petrovich, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Petykiewicz, J.

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Pham, T.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Piggott, A. Y.

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Pleumeekers, J.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Poletti, F.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Pollock, T. M.

Popovic, M.

Qiu, H.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Rainko, D.

Ram, R. J.

Reed, G. T.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Richardson, D.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Roberts, P.

Roelkens, G.

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Roucka, R.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Rouifed, M. S.

Rouifed, M.-S.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

Sabert, H.

Salamo, G. J.

Saraswat, K.

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Saraswat, K. C.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7%〈 100〉 uniaxial tensile strain,” Photon. Res. 2(3), A8–A13 (2014).
[Crossref]

Scavennec, A.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Schiefler, G.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Schirmer, A.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schmid, M.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schneider, R.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Schulte-Braucks, C.

Schulze, J.

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Schwartz, B.

Seeds, A.

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Selvidge, J.

Shen, L.

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Shimura, Y.

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Si, M.

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

Sigg, H.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Simoen, E.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Soref, R.

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

R. Soref, “Group IV photonics: Enabling 2 μm communications,” Nat. Photonics 9(6), 358–359 (2015).
[Crossref]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

Soref, R. A.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Spolenak, R.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

St J Russell, P.

Stange, D.

Stoica, T.

Stojanovic, V.

Su, S.

Süess, M. J.

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

Suh, J.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Sukhdeo, D. S.

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, “Direct bandgap germanium-on-silicon inferred from 5.7%〈 100〉 uniaxial tensile strain,” Photon. Res. 2(3), A8–A13 (2014).
[Crossref]

Sun, C.

Sun, G.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Takagi, S.

Takenaka, M.

Tan, C. S.

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref] [PubMed]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Y. Lin, K. H. Lee, S. Bao, X. Guo, H. Wang, J. Michel, and C. S. Tan, “High-efficiency normal-incidence vertical pin photodetectors on a germanium-on-insulator platform,” Photon. Res. 5(6), 702–709 (2017).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Thomson, D. J.

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

Tiedemann, A. T.

Tok, E. S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

Tolle, J.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Tomlinson, A.

Torres, A.

Tran, H.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

Tseng, H.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Ulbricht, K.

Vajandar, S.

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Van Campenhout, J.

Van Landschoot, L.

Van Opstal, T.

Vanherle, W.

Vivien, L.

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

von den Driesch, N.

Vuckovic, J.

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Wade, M.

Wan, Y.

Wang, G.

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Wang, H.

Wang, J.

Wang, Q.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, W.

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
[Crossref] [PubMed]

W. Cao, D. Hagan, D. J. Thomson, M. Nedeljkovic, C. G. Littlejohns, A. Knights, S.-U. Alam, J. Wang, F. Gardes, W. Zhang, S. Liu, K. Li, M. S. Rouifed, X. Guo, W. Wang, H. Wang, G. T. Reed, and G. Z. Mashanovich, “High-speed silicon modulators for the 2 μm wavelength band,” Optica 5(9), 1055–1062 (2018).
[Crossref]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Wang, Y.

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

Welch, D.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Weng, C.

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

Werner, J.

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Widmann, D.

M. Oehme, D. Widmann, K. Kostecki, P. Zaumseil, B. Schwartz, M. Gollhofer, R. Koerner, S. Bechler, M. Kittler, E. Kasper, and J. Schulze, “GeSn/Ge multiquantum well photodetectors on Si substrates,” Opt. Lett. 39(16), 4711–4714 (2014).
[Crossref] [PubMed]

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

Williams, D.

Wirths, S.

Wu, H.

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

Wu, W.

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

Xie, J.

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Xu, S.

Xue, C.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Xue, H.

Yang, F.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yang, Y.

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

Ye, K.

Ye, P. D.

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

Yeo, Y.-C.

Yoon, S.-F.

Yu, K.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Yu, S.-Q.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

Zang, K.

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

Zaumseil, P.

Zhang, C.

Zhang, G.

Zhang, W.

Zhang, X.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhang, Y.

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

Zhang, Z.

Zheng, J.

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Zhou, Q.

Ziari, M.

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

Zuo, Y.

Appl. Phys. Lett. (6)

M. Oehme, M. Schmid, M. Kaschel, M. Gollhofer, D. Widmann, E. Kasper, and J. Schulze, “GeSn p-i-n detectors integrated on Si with up to 4% Sn,” Appl. Phys. Lett. 101(14), 141110 (2012).
[Crossref]

J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98(6), 061108 (2011).
[Crossref]

Y.-H. Peng, H. Cheng, V. I. Mashanov, and G.-E. Chang, “GeSn p-i-n waveguide photodetectors on silicon substrates,” Appl. Phys. Lett. 105(23), 231109 (2014).
[Crossref]

J. Mathews, R. Roucka, J. Xie, S.-Q. Yu, J. Menéndez, and J. Kouvetakis, “Extended performance GeSn/Si (100) p-i-n photodetectors for full spectral range telecommunication applications,” Appl. Phys. Lett. 95(13), 133506 (2009).
[Crossref]

M. Morea, C. E. Brendel, K. Zang, J. Suh, C. S. Fenrich, Y.-C. Huang, H. Chung, Y. Huo, T. I. Kamins, K. C. Saraswat, and J. S. Harris, “Passivation of multiple-quantum-well Ge0.97Sn0. 03/Ge p-i-n photodetectors,” Appl. Phys. Lett. 110(9), 091109 (2017).
[Crossref]

H. Tseng, H. Li, V. Mashanov, Y. Yang, H. Cheng, G. Chang, R. Soref, and G. Sun, “GeSn-based pin photodiodes with strained active layer on a Si wafer,” Appl. Phys. Lett. 103(23), 231907 (2013).
[Crossref]

C. R. Phys. (1)

E. Desurvire, C. Kazmierski, F. Lelarge, X. Marcadet, A. Scavennec, F. Kish, D. Welch, R. Nagarajan, C. Joyner, R. Schneider, S. Corzine, M. Kato, P. Evans, M. Ziari, A. Dentai, J. Pleumeekers, R. Muthiah, S. Bigo, M. Nakazawa, D. Richardson, F. Poletti, M. Petrovich, S. Alam, W. Loh, and D. Payne, “Science and technology challenges in XXIst century optical communications,” C. R. Phys. 12(4), 387–416 (2011).
[Crossref]

ECS Trans. (1)

J. Mathews, R. Roucka, C. Weng, R. Beeler, J. Tolle, J. Menéndéz, and J. Kouvetakis, “Near IR photodiodes with tunable absorption edge based on Ge1-ySny alloys integrated on silicon,” ECS Trans. 33(6), 765–773 (2010).

IEEE Photonics J. (1)

M. Nedeljkovic, R. Soref, and G. Z. Mashanovich, “Predictions of Free-Carrier Electroabsorption and Electrorefraction in Germanium,” IEEE Photonics J. 7(3), 2600214 (2015).
[Crossref]

J. Appl. Phys. (4)

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared,” J. Appl. Phys. 110(1), 011301 (2011).
[Crossref]

K. H. Lee, S. Bao, Y. Wang, E. A. Fitzgerald, and C. S. Tan, “Suppression of interfacial voids formation during silane (SiH4)-based silicon oxide bonding with a thin silicon nitride capping layer,” J. Appl. Phys. 123(1), 015302 (2018).
[Crossref]

H. Tran, T. Pham, W. Du, Y. Zhang, P. C. Grant, J. M. Grant, G. Sun, R. A. Soref, J. Margetis, J. Tolle, B. Li, M. Mortazavi, and S.-Q. Yu, “High performance Ge0.89Sn0.11 photodiodes for low-cost shortwave infrared imaging,” J. Appl. Phys. 124(1), 013101 (2018).
[Crossref]

W. Wang, S. Vajandar, S. L. Lim, Y. Dong, V. R. D’Costa, T. Osipowicz, E. S. Tok, and Y.-C. Yeo, “In-situ gallium-doping for forming p+ germanium-tin and application in germanium-tin p-i-n photodetector,” J. Appl. Phys. 119(15), 155704 (2016).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of silicon and germanium and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(3), 561–658 (1980).
[Crossref]

Laser Photonics Rev. (1)

G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, “III‐V/silicon photonics for on-chip and intra-chip optical interconnects,” Laser Photonics Rev. 4(6), 751–779 (2010).
[Crossref]

Microelectron. Eng. (1)

M. Gonzalez, E. Simoen, G. Eneman, B. De Jaeger, G. Wang, R. Loo, and C. Claeys, “Defect assessment and leakage control in Ge junctions,” Microelectron. Eng. 125, 33–37 (2014).
[Crossref]

Nano Lett. (1)

J. Petykiewicz, D. Nam, D. S. Sukhdeo, S. Gupta, S. Buckley, A. Y. Piggott, J. Vučković, and K. C. Saraswat, “Direct bandgap light emission from strained germanium nanowires coupled with high-Q nanophotonic cavities,” Nano Lett. 16(4), 2168–2173 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, “Low-threshold optically pumped lasing in highly strained germanium nanowires,” Nat. Commun. 8(1), 1845 (2017).
[Crossref] [PubMed]

Nat. Photonics (6)

M. J. Süess, R. Geiger, R. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, “Analysis of enhanced light emission from highly strained germanium microbridges,” Nat. Photonics 7(6), 466–472 (2013).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4(8), 495–497 (2010).
[Crossref]

P. Chaisakul, D. Marris-Morini, J. Frigerio, D. Chrastina, M.-S. Rouifed, S. Cecchi, P. Crozat, G. Isella, and L. Vivien, “Integrated germanium optical interconnects on silicon substrates,” Nat. Photonics 8(6), 482–488 (2014).
[Crossref]

J. J. Ackert, D. J. Thomson, L. Shen, A. C. Peacock, P. E. Jessop, G. T. Reed, G. Z. Mashanovich, and A. P. Knights, “High-speed detection at two micrometres with monolithic silicon photodiodes,” Nat. Photonics 9(6), 393–396 (2015).
[Crossref]

R. Soref, “Group IV photonics: Enabling 2 μm communications,” Nat. Photonics 9(6), 358–359 (2015).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10(5), 307–311 (2016).
[Crossref]

Opt. Express (15)

J. Norman, M. J. Kennedy, J. Selvidge, Q. Li, Y. Wan, A. Y. Liu, P. G. Callahan, M. P. Echlin, T. M. Pollock, K. M. Lau, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si,” Opt. Express 25(4), 3927–3934 (2017).
[Crossref] [PubMed]

V. Stojanović, R. J. Ram, M. Popović, S. Lin, S. Moazeni, M. Wade, C. Sun, L. Alloatti, A. Atabaki, F. Pavanello, N. Mehta, and P. Bhargava, “Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited],” Opt. Express 26(10), 13106–13121 (2018).
[Crossref] [PubMed]

A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express 14(20), 9203–9210 (2006).
[Crossref] [PubMed]

J. Kang, M. Takenaka, and S. Takagi, “Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits,” Opt. Express 24(11), 11855–11864 (2016).
[Crossref] [PubMed]

M. Tang, S. Chen, J. Wu, Q. Jiang, V. G. Dorogan, M. Benamara, Y. I. Mazur, G. J. Salamo, A. Seeds, and H. Liu, “1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers,” Opt. Express 22(10), 11528–11535 (2014).
[Crossref] [PubMed]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Muneeb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22(23), 28479–28488 (2014).
[Crossref] [PubMed]

T. Pham, W. Du, H. Tran, J. Margetis, J. Tolle, G. Sun, R. A. Soref, H. A. Naseem, B. Li, and S.-Q. Yu, “Systematic study of Si-based GeSn photodiodes with 2.6 µm detector cutoff for short-wave infrared detection,” Opt. Express 24(5), 4519–4531 (2016).
[Crossref] [PubMed]

P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

D. Stange, N. von den Driesch, D. Rainko, C. Schulte-Braucks, S. Wirths, G. Mussler, A. T. Tiedemann, T. Stoica, J. M. Hartmann, Z. Ikonic, S. Mantl, D. Grützmacher, and D. Buca, “Study of GeSn based heterostructures: towards optimized group IV MQW LEDs,” Opt. Express 24(2), 1358–1367 (2016).
[Crossref] [PubMed]

S. Xu, Y.-C. Huang, K. H. Lee, W. Wang, Y. Dong, D. Lei, S. Masudy-Panah, C. S. Tan, X. Gong, and Y.-C. Yeo, “GeSn lateral p-i-n photodetector on insulating substrate,” Opt. Express 26(13), 17312–17321 (2018).
[Crossref] [PubMed]

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High-speed photo detection at two-micron-wavelength: technology enablement by GeSn/Ge multiple-quantum-well photodiode on 300 mm Si substrate,” Opt. Express 27(4), 5798–5813 (2019).
[Crossref] [PubMed]

Y. Dong, W. Wang, D. Lei, X. Gong, Q. Zhou, S. Y. Lee, W. K. Loke, S.-F. Yoon, E. S. Tok, G. Liang, and Y.-C. Yeo, “Suppression of dark current in germanium-tin on silicon p-i-n photodiode by a silicon surface passivation technique,” Opt. Express 23(14), 18611–18619 (2015).
[Crossref] [PubMed]

Y. Dong, W. Wang, S. Xu, D. Lei, X. Gong, X. Guo, H. Wang, S.-Y. Lee, W.-K. Loke, S.-F. Yoon, and Y.-C. Yeo, “Two-micron-wavelength germanium-tin photodiodes with low dark current and gigahertz bandwidth,” Opt. Express 25(14), 15818–15827 (2017).
[Crossref] [PubMed]

M. Oehme, K. Kostecki, K. Ye, S. Bechler, K. Ulbricht, M. Schmid, M. Kaschel, M. Gollhofer, R. Körner, W. Zhang, E. Kasper, and J. Schulze, “GeSn-on-Si normal incidence photodetectors with bandwidths more than 40 GHz,” Opt. Express 22(1), 839–846 (2014).
[Crossref] [PubMed]

S. Su, B. Cheng, C. Xue, W. Wang, Q. Cao, H. Xue, W. Hu, G. Zhang, Y. Zuo, and Q. Wang, “GeSn p-i-n photodetector for all telecommunication bands detection,” Opt. Express 19(7), 6400–6405 (2011).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (2)

Optomech. Technol. Astron. (1)

B. J. Frey, D. B. Leviton, and T. J. Madison, “Temperature-dependent refractive index of silicon and germanium,” Optomech. Technol. Astron. 6273, 62732J (2006).
[Crossref]

Photon. Res. (2)

Photonics J. (1)

H. Cong, C. Xue, J. Zheng, F. Yang, K. Yu, Z. Liu, X. Zhang, B. Cheng, and Q. Wang, “Silicon based GeSn p-i-n photodetector for SWIR detection,” Photonics J. 8(5), 1–6 (2016).
[Crossref]

Trans. Electron Devices (1)

H. Wu, W. Wu, M. Si, and P. D. Ye, “Demonstration of Ge nanowire CMOS devices and circuits for ultimate scaling,” Trans. Electron Devices 63(8), 3049–3057 (2016).
[Crossref]

Other (5)

S. Xu, W. Wang, Y.-C. Huang, Y. Dong, S. Masudy-Panah, H. Wang, X. Gong, and Y.-C. Yeo, “High Speed (f3-dB above 10 GHz) Photo Detection at Two-micron-wavelength Realized by GeSn/Ge Multiple-quantum-well Photodiode on a 300 mm Si Substrate,” in IEEE IEDM (2018), pp. 23.2.1–23.2.4.

H. Wu, W. Luo, M. Si, J. Zhang, H. Zhou, and P. D. Ye, “Deep sub-100 nm Ge CMOS devices on Si with the recessed S/D and channel,” in IEEE IEDM (2014), pp. 16.7.1–16.7.4.

H. Wu, W. Luo, H. Zhou, M. Si, J. Zhang, and P. D. Ye, “First experimental demonstration of Ge 3D FinFET CMOS circuits,” in IEEE VLSI (2015), pp. T58–T59.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Design and characterization of Ge passive waveguide components on Ge-on-Insulator for mid-infrared photonics,” in OFC (2016), p. Tu3E.4.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. Wheeler, J. Wooler, J. Hayes, S. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “81 Gb/s WDM transmission at 2µm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in ECOC (2014), pp. 5.20.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 (a) A simplified cross-sectional schematic of proposed integrated GeOI photonics platform that exploits the advantage of Ge CMOS with Ge strip waveguide (WG), grating coupler, modulator, and GeSn photo detectors on a common GeOI substrate. (b) Tilted-view SEM image of GeOI strip WG with WG width of 800 nm and height of 260 nm. Inset: Simulated fundamental TE mode profile. (c) Top-view microscopy image of fabricated GeOI grating couplers with linear adiabatic taper. (d) Top-view SEM image of one GeSn photo detector achieved in this work with standard GSG electrode configuration.
Fig. 2
Fig. 2 Process flow for realizing GeSn MQW photodiode active device layer stack on Ge-on-insulator platform through a low temperature wafer bonding and layer transfer technique with 200 mm wafer scale.
Fig. 3
Fig. 3 (a) Cross-sectional TEM image of the bonded GeSn/Ge MQW on GeOI wafer after removal of Si donor substrate and Ge buffer. (b) Cross-sectional schematic of the GeSn/Ge MQW with six periods of GeSn wells sandwiched between Ge barriers and vertical p-i-n structure. (c) Photograph image of the resulting 200 mm as-bonded wafer.
Fig. 4
Fig. 4 (a) SIMS depth profile of Si, Ge, and Sn from surface to buried oxide of the bonded GeSn/Ge MQW on GeOI wafer after Si donor substrate and Ge buffer removal. (b) (224) reciprocal space mapping of the bonded GeSn/Ge MQW on GeOI wafer. The GeSn/Ge MQW is fully compressively strained to the Ge buffer after bonding.
Fig. 5
Fig. 5 High resolution XRD rocking curves of the 200 mm GeSn MQW on GeOI wafer at (004) orientation, taken at five different points from the center to the edge along the <110> direction on the wafer. No quantitative difference for the peak intensity and peak position was observed, indicating excellent uniformity of GeSn/Ge MQW film across the entire 200 mm bonded wafer.
Fig. 6
Fig. 6 (a) 3D schematic of the surface illuminated GeSn/Ge MQW photodiode on GeOI platform (not to scale). (b) Key process steps for fabricating the GeSn/Ge MQW on GeOI vertical p-i-n photodiode.
Fig. 7
Fig. 7 (a) Cross-sectional STEM image of a fabricated photodiode showing the mesa sidewall region. The irregular vertical bars are created during focus ion beam processing during TEM sample preparation. (b) Energy-dispersive X-ray spectroscopy mapping at the MQW region for Ge and Sn. (c) High resolution TEM at Ge/BOX interface showing the clear lattice fringes of Ge.
Fig. 8
Fig. 8 Dark current-bias voltage (Idark-Vbias) curves for the fabricated photodiodes with various mesa diameters (D). High on-state current to off-state current ratio (measured at Vbias of + 1 V and −1 V, respectively) of ~5 orders of magnitude was achieved.
Fig. 9
Fig. 9 Benchmarking of dark current density Jdark at bias voltage Vbias = −1 V for all GeSn p-i-n photodiodes. Our GeSn photodiode on GeOI substrate shows the lowest leakage current density as compared to all other Si-based GeSn photo detectors.
Fig. 10
Fig. 10 (a) Temperature dependent current-bias voltage (I-Vbias) curves of one fabricated GeSn MQW photodiode with mesa diameter of 30 μm. The characterized temperature range is from 220 to 360 K with a step of 10 K. (b) Plot of ln(Idark/T3/2) vs. 1/kT for the photodiode at various bias voltage from −0.2 to −1 V. Linear fitting was employed for extracting activation energy Ea. The linear fitting was performed at two separate temperature regions, i.e. high temperature ranges from 310 to 360 K and low temperature ranges from 220 to 270 K. (c) Extracted Ea as a function of reverse bias voltage for two temperature regions.
Fig. 11
Fig. 11 (a) Current-bias voltage (I-Vbias) characteristics of the GeSn MQW photodiode on GeOI platform at illumination wavelength of 1550 nm with incident power (Pin) of −3, 0, 3, and 6 decibel milliwatts or dBm, respectively. Dark I-Vbias is also plotted as reference. (b) Photo current at zero bias of the GeSn MQW photodiode as a function of Pin. The photodiode under test has a mesa diameter (D) of 40 µm for facilitating the fiber alignment with the photodiode surface window.
Fig. 12
Fig. 12 Current-bias voltage (I-Vbias) characteristics of the GeSn MQW photodiode on GeOI platform at illumination wavelength of 1550 nm and 2000 nm with the same incident power Pin of 6 dBm.
Fig. 13
Fig. 13 Photo responsivity of GeSn/Ge MQW photodiode on Si substrate and on GeOI substrate at illumination wavelength λ of 1550 and 2000 nm. 65% and 98% improvements in responsivity were achieved for λ of 1550 and 2000 nm, respectively.
Fig. 14
Fig. 14 Three-dimensional schematic of the Ge p- and n-channel FinFETs on GeOI platform. (not to scale).
Fig. 15
Fig. 15 Key process steps for fabricating the Ge FinFETs.
Fig. 16
Fig. 16 (a) Top-view scanning electron microscopy (SEM) images of fabricated p- and n-channel FinFETs on the GeOI platform. The top Ge film was thinned down to 40 nm. (b) Zoomed-in SEM view of the n-FinFET with 5 parallel fins.
Fig. 17
Fig. 17 Transfer curves of the Ge (a) p-FinFET and (b) n-FinFET with Lch of 300 nm and WFIN of 30 nm at |VD| of 0.1 and 0.5 V. (c-d) Output characteristics of the same devices with |VG-VTH| from 0 to 1 V with step of ± 0.1 V.

Metrics