Abstract

The mechanical properties of tissues and cells are increasingly recognized as an important feature for the understanding of pathological processes and as a diagnostic tool in biomedicine. Impulsive stimulated Brillouin scattering (ISBS) is promising to overcome shortcomings of other measurement methods such as invasiveness, low spatial resolution and long acquisition time. In this paper, we present for the first time ISBS measurements of hydrogels, which are model materials for biological samples. We demonstrate ISBS measurements discriminating hydrogels of different stiffness. ISBS measurements with lateral resolution close to cellular level are presented. These results underline that ISBS microscopy has a high potential for biomedical applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impulsive Brillouin microscopy

Charles W. Ballmann, Zhaokai Meng, Andrew J. Traverso, Marlan O. Scully, and Vladislav V. Yakovlev
Optica 4(1) 124-128 (2017)

Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

Jae Youn Hwang, Bong Jin Kang, Changyang Lee, Hyung Ham Kim, Jinhyoung Park, Qifa Zhou, and K. Kirk Shung
Biomed. Opt. Express 6(1) 11-22 (2015)

Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements

Charles W. Ballmann, Zhaokai Meng, and Vladislav V. Yakovlev
Biomed. Opt. Express 10(4) 1750-1759 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
    [Crossref]
  2. G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
    [Crossref]
  3. O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
    [Crossref]
  4. S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
    [Crossref]
  5. D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
    [Crossref]
  6. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [Crossref]
  7. K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
    [Crossref]
  8. K. D. Mohan and A. L. Oldenburg, “Elastography of soft materials and tissues by holographic imaging of surface acoustic waves,” Opt. Express 20(17), 18887–18897 (2012).
    [Crossref]
  9. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
    [Crossref]
  10. J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3d cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
    [Crossref]
  11. N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
    [Crossref]
  12. R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
    [Crossref]
  13. K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
    [Crossref]
  14. C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
    [Crossref]
  15. H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235
  16. R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
    [Crossref]
  17. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
    [Crossref]
  18. S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
    [Crossref]
  19. A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
    [Crossref]
  20. G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
    [Crossref]
  21. S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express 2(8), 2144–2159 (2011).
    [Crossref]
  22. J. Czarske and H. Müller, “Heterodyne detection technique using stimulated Brillouin scattering and a multimode laser,” Opt. Lett. 19(19), 1589–1591 (1994).
    [Crossref]
  23. G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
    [Crossref]
  24. B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
    [Crossref]
  25. A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
    [Crossref]
  26. M. Bukshtab, Spectroscopic interferometry and laser-excitation spectroscopy, in Photometry, Radiometry, and Measurements of Optical Losses, vol. 209 (Springer, 2019), pp. 655–717
  27. J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
    [Crossref]
  28. M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.
  29. Z. Meng, B. Basagaoglu, and V. V. Yakovlev, Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies, in Photonic Therapeutics and Diagnostics XI, vol. 9303 (International Society for Optics and Photonics, 2015), p. 93033N.
  30. D. Fioretto, S. Caponi, and F. Palombo, “Brillouin-Raman mapping of natural fibers with spectral moment analysis,” Biomed. Opt. Express 10(3), 1469–1474 (2019).
    [Crossref]
  31. K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
    [Crossref]
  32. K. A. Nelson and M. D. Fayer, “Laser induced phonons: A probe of intermolecular interactions in molecular solids,” J. Chem. Phys. 72(9), 5202–5218 (1980).
    [Crossref]
  33. S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
    [Crossref]
  34. L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
    [Crossref]
  35. M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
    [Crossref]
  36. Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87(11), 6240–6256 (1987).
    [Crossref]
  37. Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency-domain light-scattering spectroscopy,” J. Chem. Phys. 87(11), 6257–6265 (1987).
    [Crossref]
  38. M. Fayer, “Picosecond holographic grating generation of ultrasonic waves,” IEEE J. Quantum Electron. 22(8), 1437–1452 (1986).
    [Crossref]
  39. P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
    [Crossref]
  40. C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
    [Crossref]
  41. I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
    [Crossref]
  42. I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
    [Crossref]
  43. Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
    [Crossref]
  44. C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
    [Crossref]
  45. C. W. Ballmann, Z. Meng, and V. V. Yakovlev, “Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements,” Biomed. Opt. Express 10(4), 1750–1759 (2019).
    [Crossref]
  46. F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
    [Crossref]
  47. J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12(8), 1191–1198 (2001).
    [Crossref]
  48. P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Distance measurement technique using tilted interference fringe systems and receiving optic matching,” Opt. Lett. 37(22), 4702–4704 (2012).
    [Crossref]
  49. S. Schlamp, H. G. Hornung, T. H. Sobota, and E. B. Cummings, “Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics,” Appl. Opt. 39(30), 5477–5481 (2000).
    [Crossref]
  50. R. W. Boyd, Nonlinear optics, 3rd ed (Academic Press, 2008).
  51. A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23(16), 1319–1321 (1998).
    [Crossref]
  52. J. W. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12(5), 597–614 (2001).
    [Crossref]
  53. T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
    [Crossref]
  54. G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
    [Crossref]
  55. S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
    [Crossref]
  56. N. Koukourakis, B. Fregin, J. Künig, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
    [Crossref]
  57. E. Edrei and G. Scarcelli, “Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics,” Appl. Phys. Lett. 112(16), 163701 (2018).
    [Crossref]
  58. P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
    [Crossref]
  59. G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
    [Crossref]
  60. G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
    [Crossref]

2019 (4)

2018 (7)

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

E. Edrei and G. Scarcelli, “Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics,” Appl. Phys. Lett. 112(16), 163701 (2018).
[Crossref]

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref]

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

2017 (4)

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

2016 (9)

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref]

N. Koukourakis, B. Fregin, J. Künig, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

2015 (5)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

2013 (1)

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

2012 (3)

2011 (4)

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
[Crossref]

S. Reiß, G. Burau, O. Stachs, R. Guthoff, and H. Stolz, “Spatially resolved Brillouin spectroscopy to determine the rheological properties of the eye lens,” Biomed. Opt. Express 2(8), 2144–2159 (2011).
[Crossref]

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref]

2010 (1)

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

2008 (1)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

2007 (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

2001 (2)

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12(8), 1191–1198 (2001).
[Crossref]

J. W. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12(5), 597–614 (2001).
[Crossref]

2000 (2)

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

S. Schlamp, H. G. Hornung, T. H. Sobota, and E. B. Cummings, “Accuracy and uncertainty of single-shot, nonresonant laser-induced thermal acoustics,” Appl. Opt. 39(30), 5477–5481 (2000).
[Crossref]

1999 (1)

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
[Crossref]

1998 (1)

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

1994 (1)

1993 (1)

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

1989 (1)

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

1987 (2)

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87(11), 6240–6256 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency-domain light-scattering spectroscopy,” J. Chem. Phys. 87(11), 6257–6265 (1987).
[Crossref]

1986 (1)

M. Fayer, “Picosecond holographic grating generation of ultrasonic waves,” IEEE J. Quantum Electron. 22(8), 1437–1452 (1986).
[Crossref]

1984 (1)

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

1980 (1)

K. A. Nelson and M. D. Fayer, “Laser induced phonons: A probe of intermolecular interactions in molecular solids,” J. Chem. Phys. 72(9), 5202–5218 (1980).
[Crossref]

Abuhattum, S.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Achouri, S.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Adie, S. G.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3d cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Aglyamov, S. R.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Antonacci, G.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Ballmann, C. W.

C. W. Ballmann, Z. Meng, and V. V. Yakovlev, “Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements,” Biomed. Opt. Express 10(4), 1750–1759 (2019).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Bao, Q.

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

Barker, P. F.

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
[Crossref]

Basagaoglu, B.

Z. Meng, B. Basagaoglu, and V. V. Yakovlev, Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies, in Photonic Therapeutics and Diagnostics XI, vol. 9303 (International Society for Optics and Photonics, 2015), p. 93033N.

Belkhadir, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Berner, R.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Bilenca, A.

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref]

Bom, N.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

Bornhäuser, M.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Bosanac, D.

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Boyd, R. W.

R. W. Boyd, Nonlinear optics, 3rd ed (Academic Press, 2008).

Braakman, S.

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref]

Bukshtab, M.

M. Bukshtab, Spectroscopic interferometry and laser-excitation spectroscopy, in Photometry, Radiometry, and Measurements of Optical Losses, vol. 209 (Springer, 2019), pp. 655–717

M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.

Burau, G.

Büttner, L.

Caponi, S.

D. Fioretto, S. Caponi, and F. Palombo, “Brillouin-Raman mapping of natural fibers with spectral moment analysis,” Biomed. Opt. Express 10(3), 1469–1474 (2019).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Chilvers, E. R.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Chin, L.

Ciuffreda, L.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Claus, D.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Cojoc, G.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Coskun, Ü.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Cummings, E. B.

Curatolo, A.

Czarske, J.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Distance measurement technique using tilted interference fringe systems and receiving optic matching,” Opt. Lett. 37(22), 4702–4704 (2012).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
[Crossref]

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12(8), 1191–1198 (2001).
[Crossref]

J. Czarske and H. Müller, “Heterodyne detection technique using stimulated Brillouin scattering and a multimode laser,” Opt. Lett. 19(19), 1589–1591 (1994).
[Crossref]

Czarske, J. W.

N. Koukourakis, B. Fregin, J. Künig, L. Büttner, and J. W. Czarske, “Wavefront shaping for imaging-based flow velocity measurements through distortions using a Fresnel guide star,” Opt. Express 24(19), 22074–22087 (2016).
[Crossref]

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

J. W. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12(5), 597–614 (2001).
[Crossref]

de Korte, C. L.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

de Silva, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Degenhardt, F.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Doyley, M. M.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref]

Dreier, F.

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

Dunlop, I. E.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Edrei, E.

E. Edrei and G. Scarcelli, “Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics,” Appl. Phys. Lett. 112(16), 163701 (2018).
[Crossref]

Ehman, R. L.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Ekpenyong, A.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Elsayad, K.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Emiliani, C.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Farrokh, A.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Fatemi, M.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Fayer, M.

M. Fayer, “Picosecond holographic grating generation of ultrasonic waves,” IEEE J. Quantum Electron. 22(8), 1437–1452 (1986).
[Crossref]

Fayer, M. D.

K. A. Nelson and M. D. Fayer, “Laser induced phonons: A probe of intermolecular interactions in molecular solids,” J. Chem. Phys. 72(9), 5202–5218 (1980).
[Crossref]

Feng, X.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3d cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Fiore, A.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

Fioretto, D.

D. Fioretto, S. Caponi, and F. Palombo, “Brillouin-Raman mapping of natural fibers with spectral moment analysis,” Biomed. Opt. Express 10(3), 1469–1474 (2019).
[Crossref]

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Fischer, A.

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
[Crossref]

Fischer, T.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Fischer-Friedrich, E.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Franze, K.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Fregin, B.

Friedman, M.

M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.

Gallemí, M.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Gamble, E. B.

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Garra, B. S.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Garriss, G.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Gautier, H. O. B.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Geibel, J.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Genberg, L.

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

Girardo, S.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Golfier, S.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Goswami, R.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Gracewski, S.

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

Greb, T.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Greenleaf, J. F.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Grinstead, J. H.

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
[Crossref]

Grodzinsky, A. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Grzybek, M.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Guajardo, E. R. S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Guck, J.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Günther, P.

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Distance measurement technique using tilted interference fringe systems and receiving optic matching,” Opt. Lett. 37(22), 4702–4704 (2012).
[Crossref]

Guthoff, R.

Hall, T. J.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Heida, T.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Henriques-Normark, B.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Herbig, M.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Herold, C.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Holtzmann, K.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Hornung, H. G.

Jacobi, A.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Jaffer, O. S.

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Jaillais, Y.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Kabakova, I. V.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Kamm, R. D.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Kennedy, B. F.

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Keyser, U. F.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Kim, H.

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

Kim, K.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Kinoshita, S.

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Klaue, D.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Kondiboyina, A.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Kong, J.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Koser, D. E.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Koukourakis, N.

Krams, R.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Kräter, M.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Künig, J.

Kuschmierz, R.

Larin, K. V.

Lee, G. Y. H.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Lim, C. T.

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Lung, P. F. C.

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Manduca, A.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Mansfeld, J.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Mattana, S.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Mattarelli, M.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Maznev, A. A.

Mehta, V. V.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Mellroth, P.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Meng, Z.

C. W. Ballmann, Z. Meng, and V. V. Yakovlev, “Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements,” Biomed. Opt. Express 10(4), 1750–1759 (2019).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
[Crossref]

Z. Meng, B. Basagaoglu, and V. V. Yakovlev, Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies, in Photonic Therapeutics and Diagnostics XI, vol. 9303 (International Society for Optics and Photonics, 2015), p. 93033N.

Menschner, L.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Meth, J. S.

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Mietke, A.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Miles, R. B.

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
[Crossref]

Miller, R. J. D.

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

Mischinger, J.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Mlikota, M.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Moeendarbary, E.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Mohan, K. D.

Mokbel, D.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Mückel, C.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Muller, D.

M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.

Müller, H.

Müller, P.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Mulligan, J. A.

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3d cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

Müllmert, S.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Nelson, K. A.

A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23(16), 1319–1321 (1998).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency-domain light-scattering spectroscopy,” J. Chem. Phys. 87(11), 6257–6265 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87(11), 6240–6256 (1987).
[Crossref]

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

K. A. Nelson and M. D. Fayer, “Laser induced phonons: A probe of intermolecular interactions in molecular solids,” J. Chem. Phys. 72(9), 5202–5218 (1980).
[Crossref]

Nia, H. T.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Oldenburg, A. L.

Osten, W.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Otto, O.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Overby, D. R.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Pagliara, S.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Palombo, F.

Paranjape, A.

M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.

Parker, K. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref]

Pasterkamp, G.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

Patel, K.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Paterson, C.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Pedrigi, R. M.

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Pedrini, G.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Petrov, G. I.

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
[Crossref]

Pfister, T.

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

P. Günther, R. Kuschmierz, T. Pfister, and J. Czarske, “Distance measurement technique using tilted interference fringe systems and receiving optic matching,” Opt. Lett. 37(22), 4702–4704 (2012).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
[Crossref]

Polacheck, W. J.

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

Ranford-Cartwright, L.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Reichel, F.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Reichenbach, T.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Reiß, S.

Reithuber, E.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Remer, I.

I. Remer and A. Bilenca, “Background-free Brillouin spectroscopy in scattering media at 780 nm via stimulated Brillouin scattering,” Opt. Lett. 41(5), 926–929 (2016).
[Crossref]

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

Robinson, M. M.

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Rogers, J. A.

Rosendahl, P.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Rossman, P. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Rubens, D. J.

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref]

Ruberti, J. W.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Sagini, K.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Sampson, D. D.

K. V. Larin and D. D. Sampson, “Optical coherence elastography - OCT at work in tissue biomechanics [invited],” Biomed. Opt. Express 8(2), 1172–1202 (2017).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Sanderson, R. W.

Sarvazyan, A.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Scarcelli, G.

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref]

E. Edrei and G. Scarcelli, “Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics,” Appl. Phys. Lett. 112(16), 163701 (2018).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

Schlamp, S.

Schlüßler, R.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Schmauder, S.

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

Schmidt, W.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Schürmann, M.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Scully, M. O.

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Serra, M. D.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Shah, A.

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Shao, P.

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

Sherwood, J. M.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Shimada, Y.

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Sidhu, P. S.

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Slowinski, T.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Sobota, T. H.

Stächele, J.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Stachs, O.

Steelman, Z. A.

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Stolz, H.

Suttorp, M.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Taubenberger, A.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Thiele, J.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Thomas, A.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Thompson, A. J.

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

Thompson, J. V.

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Toepfner, N.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Töpfner, N.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Török, P.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Tráber, N.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Traverso, A. J.

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Tregay, N.

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Troyanova-Wood, M. A.

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Tsurumaki, W.

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Ulbricht, E.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Urban, M. W.

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

Urbanelli, L.

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

van der Steen, A. F. W.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

Wagner, K.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Weber, S.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Werner, C.

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

Werner, S.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Wijesinghe, P.

R. W. Sanderson, A. Curatolo, P. Wijesinghe, L. Chin, and B. F. Kennedy, “Finger-mounted quantitative micro-elastography,” Biomed. Opt. Express 10(4), 1760–1773 (2019).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Williams, L. R.

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Wobus, M.

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Wojcinski, S.

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

Woutman, H. A.

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

Wu, P.-J.

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

Yagi, T.

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Yakovlev, V. V.

C. W. Ballmann, Z. Meng, and V. V. Yakovlev, “Nonlinear Brillouin spectroscopy: what makes it a better tool for biological viscoelastic measurements,” Biomed. Opt. Express 10(4), 1750–1759 (2019).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4(1), 124–128 (2017).
[Crossref]

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
[Crossref]

Z. Meng, B. Basagaoglu, and V. V. Yakovlev, Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies, in Photonic Therapeutics and Diagnostics XI, vol. 9303 (International Society for Optics and Photonics, 2015), p. 93033N.

Yamaguchi, M.

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Yan, Y.-X.

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87(11), 6240–6256 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency-domain light-scattering spectroscopy,” J. Chem. Phys. 87(11), 6257–6265 (1987).
[Crossref]

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Yun, S. H.

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

Yun, S.-H.

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

Zhang, J.

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

Zhang, L.

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Zimmermann, C.

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Adv. Opt. Photonics (1)

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photonics 8(2), 300–327 (2016).
[Crossref]

Anal. Chem. (1)

A. J. Traverso, J. V. Thompson, Z. A. Steelman, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Dual Raman-Brillouin microscope for chemical and mechanical characterization and imaging,” Anal. Chem. 87(15), 7519–7523 (2015).
[Crossref]

Analyst (1)

Z. Meng, G. I. Petrov, and V. V. Yakovlev, “Flow cytometry using Brillouin imaging and sensing via time-resolved optical (BISTRO) measurements,” Analyst 140(21), 7160–7164 (2015).
[Crossref]

APL Photonics (1)

I. Remer and A. Bilenca, “High-speed stimulated Brillouin scattering spectroscopy at 780 nm,” APL Photonics 1(6), 061301 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Edrei and G. Scarcelli, “Brillouin micro-spectroscopy through aberrations via sensorless adaptive optics,” Appl. Phys. Lett. 112(16), 163701 (2018).
[Crossref]

A. Fiore, J. Zhang, P. Shao, S. H. Yun, and G. Scarcelli, “High-extinction virtually imaged phased array-based Brillouin spectroscopy of turbid biological media,” Appl. Phys. Lett. 108(20), 203701 (2016).
[Crossref]

Biomed. Opt. Express (5)

Biophys. J. (1)

R. Schlüßler, S. Müllmert, S. Abuhattum, G. Cojoc, P. Müller, K. Kim, C. Mückel, C. Zimmermann, J. Czarske, and J. Guck, “Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging,” Biophys. J. 115(5), 911–923 (2018).
[Crossref]

Chem. Phys. (1)

L. Genberg, Q. Bao, S. Gracewski, and R. J. D. Miller, “Picosecond transient thermal phase grating spectroscopy: A new approach to the study of vibrational energy relaxation processes in proteins,” Chem. Phys. 131(1), 81–97 (1989).
[Crossref]

Chem. Phys. Lett. (1)

M. M. Robinson, Y.-X. Yan, E. B. Gamble, L. R. Williams, J. S. Meth, and K. A. Nelson, “Picosecond impulsive stimulated brillouin scattering: Optical excitation of coherent transverse acoustic waves and application to time-domain investigations of structural phase transitions,” Chem. Phys. Lett. 112(6), 491–496 (1984).
[Crossref]

Circulation (1)

C. L. de Korte, G. Pasterkamp, A. F. W. van der Steen, H. A. Woutman, and N. Bom, “Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitro,” Circulation 102(6), 617–623 (2000).
[Crossref]

Curr. Med. Imaging Rev. (1)

A. Sarvazyan, T. J. Hall, M. W. Urban, M. Fatemi, S. R. Aglyamov, and B. S. Garra, “An overview of elastography - an emerging branch of medical imaging,” Curr. Med. Imaging Rev. 7(4), 255–282 (2011).
[Crossref]

eLife (1)

N. Toepfner, C. Herold, O. Otto, P. Rosendahl, A. Jacobi, M. Kräter, J. Stächele, L. Menschner, M. Herbig, L. Ciuffreda, L. Ranford-Cartwright, M. Grzybek, Ü. Coskun, E. Reithuber, G. Garriss, P. Mellroth, B. Henriques-Normark, N. Tregay, M. Suttorp, M. Bornhäuser, E. R. Chilvers, R. Berner, and J. Guck, “Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood,” eLife 7, e29213 (2018).
[Crossref]

Eur. J. Ultrasound (1)

S. Wojcinski, A. Farrokh, S. Weber, A. Thomas, T. Fischer, T. Slowinski, W. Schmidt, and F. Degenhardt, “Multicenter study of ultrasound real-time tissue elastography in 779 cases for the assessment of breast lesions: improved diagnostic performance by combining the BI-RADS®-US classification system with sonoelastography,” Eur. J. Ultrasound 31(05), 484–491 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Fayer, “Picosecond holographic grating generation of ultrasonic waves,” IEEE J. Quantum Electron. 22(8), 1437–1452 (1986).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

F. Dreier, P. Günther, T. Pfister, J. W. Czarske, and A. Fischer, “Interferometric sensor system for blade vibration measurements in turbomachine applications,” IEEE Trans. Instrum. Meas. 62(8), 2297–2302 (2013).
[Crossref]

J. Chem. Phys. (3)

K. A. Nelson and M. D. Fayer, “Laser induced phonons: A probe of intermolecular interactions in molecular solids,” J. Chem. Phys. 72(9), 5202–5218 (1980).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. I. General theory,” J. Chem. Phys. 87(11), 6240–6256 (1987).
[Crossref]

Y.-X. Yan and K. A. Nelson, “Impulsive stimulated light scattering. II. Comparison to frequency-domain light-scattering spectroscopy,” J. Chem. Phys. 87(11), 6257–6265 (1987).
[Crossref]

J. Mater. Chem. B (1)

S. Girardo, N. Tráber, K. Wagner, G. Cojoc, C. Herold, R. Goswami, R. Schlüßler, S. Abuhattum, A. Taubenberger, F. Reichel, D. Mokbel, M. Herbig, M. Schürmann, P. Müller, T. Heida, A. Jacobi, E. Ulbricht, J. Thiele, C. Werner, and J. Guck, “Standardized microgel beads as elastic cell mechanical probes,” J. Mater. Chem. B 6(39), 6245–6261 (2018).
[Crossref]

J. Med. Imaging (1)

D. Claus, M. Mlikota, J. Geibel, T. Reichenbach, G. Pedrini, J. Mischinger, S. Schmauder, and W. Osten, “Large-field-of-view optical elastography using digital image correlation for biological soft tissue investigation,” J. Med. Imaging 4(1), 014505 (2017).
[Crossref]

J. R. Soc., Interface (1)

G. Antonacci, R. M. Pedrigi, A. Kondiboyina, V. V. Mehta, R. de Silva, C. Paterson, R. Krams, and P. Török, “Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma,” J. R. Soc., Interface 12(112), 20150843 (2015).
[Crossref]

Light: Sci. Appl. (1)

S. Mattana, M. Mattarelli, L. Urbanelli, K. Sagini, C. Emiliani, M. D. Serra, D. Fioretto, and S. Caponi, “Non-contact mechanical and chemical analysis of single living cells by microspectroscopic techniques,” Light: Sci. Appl. 7(2), 17139 (2018).
[Crossref]

Meas. Sci. Technol. (3)

J. Czarske, “A miniaturized dual-fibre laser Doppler sensor,” Meas. Sci. Technol. 12(8), 1191–1198 (2001).
[Crossref]

J. W. Czarske, “Statistical frequency measuring error of the quadrature demodulation technique for noisy single-tone pulse signals,” Meas. Sci. Technol. 12(5), 597–614 (2001).
[Crossref]

T. Pfister, A. Fischer, and J. Czarske, “Cramér–Rao lower bound of laser Doppler measurements at moving rough surfaces,” Meas. Sci. Technol. 22(5), 055301 (2011).
[Crossref]

Nat. Methods (4)

P.-J. Wu, I. V. Kabakova, J. W. Ruberti, J. M. Sherwood, I. E. Dunlop, C. Paterson, P. Török, and D. R. Overby, “Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials,” Nat. Methods 15(8), 561–562 (2018).
[Crossref]

G. Scarcelli, W. J. Polacheck, H. T. Nia, K. Patel, A. J. Grodzinsky, R. D. Kamm, and S. H. Yun, “Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy,” Nat. Methods 12(12), 1132–1134 (2015).
[Crossref]

G. Scarcelli and S. H. Yun, “Reply to ‘Water content, not stiffness, dominates Brillouin spectroscopy measurements in hydrated materials’,” Nat. Methods 15(8), 562–563 (2018).
[Crossref]

O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S. Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, M. Wobus, N. Töpfner, U. F. Keyser, J. Mansfeld, E. Fischer-Friedrich, and J. Guck, “Real-time deformability cytometry: on-the-fly cell mechanical phenotyping,” Nat. Methods 12(3), 199–202 (2015).
[Crossref]

Nat. Photonics (2)

G. Scarcelli and S. H. Yun, “Confocal Brillouin microscopy for three-dimensional mechanical imaging,” Nat. Photonics 2(1), 39–43 (2008).
[Crossref]

B. F. Kennedy, P. Wijesinghe, and D. D. Sampson, “The emergence of optical elastography in biomedicine,” Nat. Photonics 11(4), 215–221 (2017).
[Crossref]

Opt. Commun. (1)

P. F. Barker, J. H. Grinstead, and R. B. Miles, “Single-pulse temperature measurement in supersonic air flow with predissociated laser-induced thermal gratings,” Opt. Commun. 168(1-4), 177–182 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (4)

Optica (1)

Phys. Med. Biol. (1)

K. J. Parker, M. M. Doyley, and D. J. Rubens, “Imaging the elastic properties of tissue: the 20 year perspective,” Phys. Med. Biol. 56(1), R1–R29 (2011).
[Crossref]

Rev. Sci. Instrum. (1)

S. Kinoshita, Y. Shimada, W. Tsurumaki, M. Yamaguchi, and T. Yagi, “New high-resolution phonon spectroscopy using impulsive stimulated Brillouin scattering,” Rev. Sci. Instrum. 64(12), 3384–3393 (1993).
[Crossref]

Sci. Rep. (4)

C. W. Ballmann, J. V. Thompson, A. J. Traverso, Z. Meng, M. O. Scully, and V. V. Yakovlev, “Stimulated Brillouin scattering microscopic imaging,” Sci. Rep. 5(1), 18139 (2016).
[Crossref]

G. Antonacci and S. Braakman, “Biomechanics of subcellular structures by non-invasive Brillouin microscopy,” Sci. Rep. 6(1), 37217 (2016).
[Crossref]

J. A. Mulligan, X. Feng, and S. G. Adie, “Quantitative reconstruction of time-varying 3d cell forces with traction force optical coherence microscopy,” Sci. Rep. 9(1), 4086 (2019).
[Crossref]

J. Zhang, A. Fiore, S.-H. Yun, H. Kim, and G. Scarcelli, “Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging,” Sci. Rep. 6(1), 35398 (2016).
[Crossref]

Sci. Signaling (1)

K. Elsayad, S. Werner, M. Gallemí, J. Kong, E. R. S. Guajardo, L. Zhang, Y. Jaillais, T. Greb, and Y. Belkhadir, “Mapping the subcellular mechanical properties of live cells in tissues with fluorescence emission–Brillouin imaging,” Sci. Signaling 9(435), rs5 (2016).
[Crossref]

Science (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[Crossref]

Trends Biotechnol. (1)

G. Y. H. Lee and C. T. Lim, “Biomechanics approaches to studying human diseases,” Trends Biotechnol. 25(3), 111–118 (2007).
[Crossref]

Ultrasound (1)

O. S. Jaffer, P. F. C. Lung, D. Bosanac, A. Shah, and P. S. Sidhu, “Is ultrasound elastography of the liver ready to replace biopsy? A critical review of the current techniques,” Ultrasound 20(1), 24–32 (2012).
[Crossref]

Other (5)

H. O. B. Gautier, A. J. Thompson, S. Achouri, D. E. Koser, K. Holtzmann, E. Moeendarbary, and K. Franze, Atomic force microscopy-based force measurements on animal cells and tissues, in Methods in Cell Biology vol. 125 of Biophysical Methods in Cell BiologyE. K. Paluch, ed. (Academic Press, 2015), pp. 211–235

M. Bukshtab, A. Paranjape, M. Friedman, and D. Muller, Fast low-noise Brillouin spectroscopy measurements of elasticity for corneal crosslinking, in Optical Elastography and Tissue Biomechanics II, vol. 9327 (International Society for Optics and Photonics, 2015), p. 932718.

Z. Meng, B. Basagaoglu, and V. V. Yakovlev, Atherosclerotic plaque detection by confocal Brillouin and Raman microscopies, in Photonic Therapeutics and Diagnostics XI, vol. 9303 (International Society for Optics and Photonics, 2015), p. 93033N.

M. Bukshtab, Spectroscopic interferometry and laser-excitation spectroscopy, in Photometry, Radiometry, and Measurements of Optical Losses, vol. 209 (Springer, 2019), pp. 655–717

R. W. Boyd, Nonlinear optics, 3rd ed (Academic Press, 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Principle explanation of the function of the ISBS microscope. From left to right: excitation by the excitation beam and generation of the fringe pattern; oscillation of the acoustic standing wave; readout of the acoustic standing wave by the probe beam.
Fig. 2.
Fig. 2. Sketch of the ISBS microscope: PUL excitation laser (pulsed 12 ps, 532 nm); L2 L3 cylindrical lenses (optional); L1 L4 L5 L6 L7 achromatic lenses; PRL probe laser (cw, 895 nm); COL collimator; DM dichroic mirror (long-pass); GT grating; SC sample container; LP long-pass; ID iris diaphragm; FC fiber connector with long-pass; DET detector; OC oscilloscope.
Fig. 3.
Fig. 3. Measurements on methanol: (a) Time signal for 512 averaged signals; (b) Windowed Fourier transform of the time signal with regression function; (c) Intensity distribution of excitation beams at beam intersection captured by a camera.
Fig. 4.
Fig. 4. (a) Time signals for different excitation energies (512 averages); (b) Time signals for different numbers of averaged signals (3.1 µJ excitation pulse energy); (c) Signal strength equivalent based on integral in frequency domain over excitation energy; (d) Signal strength equivalent based on integral in frequency domain over number of averaged signals
Fig. 5.
Fig. 5. Measurements on hydrogel: (a) Time signals for 512 averaged signals; (b) Windowed Fourier transform of time signals with regression; (c) Prepared samples of three different stiffness; (d) Statistical analysis of 60 measurements (each 512 averages) for each sample in the form of a box plot.
Fig. 6.
Fig. 6. Measurement on methanol with shrunk measurement volume: (a) Intensity distribution of excitation beams at beam intersection captured by a camera; (b) Intensity distribution resulting from a simulation of the excitation beams; (c) Time signal for 2000 averaged signals; (d) Windowed Fourier transform of time signal with regression function.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d = λ pump 2 sin ( φ pump ) .
f 2 = 2 c S / d ,
f 1 = c S / d
d = g f L5 2 f L4 .
f 2 = 4 c S f L4 g f L5 .

Metrics