Abstract

As an active quantum system, the correlated spontaneous emission laser has many valuable applications in quantum information processing. Here, we report on temporal evolution of the quantum correlations such as quantum discord, entanglement, steering, and Bell non-locality for the field retrieved in the form of two-mode Gaussian state using a system of correlated spontaneous emission laser. We consider the initial modes of the cavity field as two independent arbitrary single-mode Gaussian states inside the cavity. The density matrix for the resulting cavity field is evaluated both analytically and numerically with respect to the time evolution of the laser system. The influences of the non-classicality and purity of the initial cavity modes, the Rabi frequency of the classical coupling field, and the cavity damping rates are studied thoroughly. We show explicitly that the boundaries for the four kinds of the temporal quantum correlations of the cavity field retrieved satisfy a strict hierarchy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum steering of a two-mode Gaussian state using a quantum beat laser

Shakir Ullah, Haleema Sadia Qureshi, and Fazal Ghafoor
Appl. Opt. 58(26) 7014-7021 (2019)

Coherence control of entanglement dynamics of two-mode Gaussian state via Raman driven quantum beat laser using Simon’s criterion

Shakir Ullah, Haleema Sadia Qureshi, Gul Tiaz, Fazal Ghafoor, and Farhan Saif
Appl. Opt. 58(1) 197-204 (2019)

Remote transfer of Gaussian quantum discord

Lingyu Ma and Xiaolong Su
Opt. Express 22(13) 15894-15903 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).
    [Crossref]
  2. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [Crossref]
  3. G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
    [Crossref] [PubMed]
  4. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
    [Crossref]
  5. Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
    [Crossref]
  6. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [Crossref]
  7. A. V. Chizhov and R. G. Nazmitdinov, “Entanglement control in coupled two-mode boson systems,” Phys. Rev. A 78, 064302 (2008).
    [Crossref]
  8. K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
    [Crossref]
  9. P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
    [Crossref] [PubMed]
  10. I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
    [Crossref] [PubMed]
  11. M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
    [Crossref] [PubMed]
  12. C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
    [Crossref] [PubMed]
  13. C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
    [Crossref] [PubMed]
  14. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
    [Crossref]
  15. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
    [Crossref]
  16. S. Tesfa, “Continuous variable quantum discord in a correlated emission laser,” Optics Communications 285, 830–837 (2012).
    [Crossref]
  17. T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
    [Crossref] [PubMed]
  18. J. Xu, “Quantifying coherence of Gaussian states,” Phys. Rev. A 93, 032111 (2016).
    [Crossref]
  19. Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
    [Crossref]
  20. H. S. Qureshi, S. Ullah, and F. Ghafoor, “Hierarchy of quantum correlations using a linear beam splitter,” Sci. Rep. 8, 16288 (2018).
    [Crossref] [PubMed]
  21. H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
    [Crossref] [PubMed]
  22. H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
    [Crossref]
  23. L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
    [Crossref]
  24. S. Tesfa, “Entanglement amplification in a nondegenerate three-level cascade laser,” Phys. Rev. A 74, 043816 (2006).
    [Crossref]
  25. M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
    [Crossref]
  26. M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
    [Crossref]
  27. S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
    [Crossref]
  28. S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
    [Crossref]
  29. A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
    [Crossref]
  30. R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
    [Crossref]
  31. S. Ullah, H. S. Qureshi, G. Tiaz, F. Ghafoor, and F. Saif, “Coherence control of entanglement dynamics of two-mode Gaussian state via Raman driven quantum beat laser using Simon’s criterion,” Appl. Opt. 58, 197–204 (2019).
    [Crossref] [PubMed]
  32. A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
    [Crossref]
  33. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  34. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  35. E. Schrodinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
    [Crossref]
  36. H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
    [Crossref] [PubMed]
  37. E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
    [Crossref]
  38. D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
    [Crossref]
  39. G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
    [Crossref] [PubMed]
  40. J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
    [Crossref]
  41. W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
    [Crossref]
  42. S. Ullah, H. S. Qureshi, and F. Ghafoor, “Quantum steering of two-mode Gaussian state using a quantum beat laser,” Appl. Opt. 58, 7014–7021 (2019).
    [Crossref]
  43. C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
    [Crossref]
  44. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
    [Crossref]
  45. M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
    [Crossref]
  46. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (New York) 1, 195–200 (1964).
  47. K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
    [Crossref]
  48. P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
    [Crossref]
  49. H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
    [Crossref]
  50. C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
    [Crossref]
  51. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
    [Crossref]
  52. A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
    [Crossref] [PubMed]
  53. M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
    [Crossref] [PubMed]
  54. A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
    [Crossref]
  55. A. Brodutch and D. R. Terno, “Quantum discord, local operations, and Maxwell’s demons,” Phys. Rev. A 81, 062103 (2010).
    [Crossref]
  56. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
    [Crossref]
  57. P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
    [Crossref] [PubMed]
  58. G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
    [Crossref] [PubMed]
  59. F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
    [Crossref]
  60. D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
    [Crossref] [PubMed]
  61. Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
    [Crossref]
  62. J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
    [Crossref]
  63. Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
    [Crossref]
  64. Y. X. Chen and S. W. Li, “Quantum correlations in topological quantum phase transitions,” Phys. Rev. A 81, 032120 (2010).
    [Crossref]
  65. S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
    [Crossref]
  66. G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
    [Crossref] [PubMed]
  67. P. Marian and T. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state,” Phys. Rev. Lett. 101, 220403 (2008).
    [Crossref] [PubMed]
  68. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
    [Crossref]
  69. H. J. Kimble and D. F. Walls, “Squeezed states of the electromagnetic field: Introduction to feature issue,” J. Opt. Soc. Am. B 4, 1449 (1987).
  70. G. Adesso, “Entanglement of Gaussian states,” arXiv:quant-ph/0702069 (2007).
  71. L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
    [Crossref]
  72. M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
    [Crossref]
  73. M. G. A. Paris, “Entanglement and visibility at the output of a mach-zehnder interferometer,” Phys. Rev. A 59, 1615–1621 (1999).
    [Crossref]
  74. B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
    [Crossref] [PubMed]
  75. S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
    [Crossref] [PubMed]
  76. K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
    [Crossref]
  77. E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
    [Crossref]
  78. S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
    [Crossref] [PubMed]
  79. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997), Chap. 14.
    [Crossref]
  80. C. A. Blockley and D. Walls, “Intensity fluctuations in a frequency down-conversion process with three-level atoms,” Phys. Rev. A 43, 5049–5056 (1991).
    [Crossref] [PubMed]
  81. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
    [Crossref]
  82. C. T. Lee, “Measure of the nonclassicality of nonclassical states,” Phys. Rev. A 44, R2775–R2778 (1991).
    [Crossref] [PubMed]
  83. M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
    [Crossref]
  84. S. M. Barnett and P. L. Knight, “Squeezing in correlated quantum systems,” J. Mod. Opt. 34, 841–853 (1987).
    [Crossref]
  85. D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
    [Crossref] [PubMed]
  86. J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
    [Crossref]
  87. S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
    [Crossref]

2019 (2)

2018 (2)

W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
[Crossref]

H. S. Qureshi, S. Ullah, and F. Ghafoor, “Hierarchy of quantum correlations using a linear beam splitter,” Sci. Rep. 8, 16288 (2018).
[Crossref] [PubMed]

2016 (3)

J. Xu, “Quantifying coherence of Gaussian states,” Phys. Rev. A 93, 032111 (2016).
[Crossref]

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

2015 (5)

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref] [PubMed]

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

2014 (4)

P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref] [PubMed]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

2013 (3)

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

2012 (6)

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

S. Tesfa, “Continuous variable quantum discord in a correlated emission laser,” Optics Communications 285, 830–837 (2012).
[Crossref]

2011 (6)

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
[Crossref]

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

2010 (9)

Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
[Crossref]

Y. X. Chen and S. W. Li, “Quantum correlations in topological quantum phase transitions,” Phys. Rev. A 81, 032120 (2010).
[Crossref]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

A. Brodutch and D. R. Terno, “Quantum discord, local operations, and Maxwell’s demons,” Phys. Rev. A 81, 062103 (2010).
[Crossref]

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref] [PubMed]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
[Crossref]

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

2009 (3)

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

2008 (6)

A. V. Chizhov and R. G. Nazmitdinov, “Entanglement control in coupled two-mode boson systems,” Phys. Rev. A 78, 064302 (2008).
[Crossref]

S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
[Crossref]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[Crossref] [PubMed]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

P. Marian and T. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state,” Phys. Rev. Lett. 101, 220403 (2008).
[Crossref] [PubMed]

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

2007 (3)

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
[Crossref]

2006 (3)

L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
[Crossref]

S. Tesfa, “Entanglement amplification in a nondegenerate three-level cascade laser,” Phys. Rev. A 74, 043816 (2006).
[Crossref]

L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
[Crossref]

2005 (5)

C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
[Crossref]

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
[Crossref] [PubMed]

H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

2004 (2)

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

2003 (3)

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).
[Crossref]

2002 (2)

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

2001 (3)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
[Crossref]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

2000 (1)

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

1999 (1)

M. G. A. Paris, “Entanglement and visibility at the output of a mach-zehnder interferometer,” Phys. Rev. A 59, 1615–1621 (1999).
[Crossref]

1998 (1)

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

1996 (1)

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

1992 (1)

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[Crossref] [PubMed]

1991 (3)

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
[Crossref] [PubMed]

C. T. Lee, “Measure of the nonclassicality of nonclassical states,” Phys. Rev. A 44, R2775–R2778 (1991).
[Crossref] [PubMed]

C. A. Blockley and D. Walls, “Intensity fluctuations in a frequency down-conversion process with three-level atoms,” Phys. Rev. A 43, 5049–5056 (1991).
[Crossref] [PubMed]

1987 (2)

S. M. Barnett and P. L. Knight, “Squeezing in correlated quantum systems,” J. Mod. Opt. 34, 841–853 (1987).
[Crossref]

H. J. Kimble and D. F. Walls, “Squeezed states of the electromagnetic field: Introduction to feature issue,” J. Opt. Soc. Am. B 4, 1449 (1987).

1985 (1)

D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[Crossref] [PubMed]

1969 (1)

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

1964 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (New York) 1, 195–200 (1964).

1935 (2)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

E. Schrodinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Abdel-Aty, M.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

Abdel-Khalek, S.

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

Acin, A.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

Adesoo, G.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

Adesso, G.

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

G. Adesso, “Entanglement of Gaussian states,” arXiv:quant-ph/0702069 (2007).

Al-Amri, S.

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

Aolita, L.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

Apollaro, T. J. G.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Auffeves, A.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

Augusiak, R.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

Banaszek, K.

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

Banchi, L.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Barnett, S. M.

S. M. Barnett and P. L. Knight, “Squeezing in correlated quantum systems,” J. Mod. Opt. 34, 841–853 (1987).
[Crossref]

Baumgratz, T.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (New York) 1, 195–200 (1964).

Bennett, C. H.

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Berrada, K.

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

Blockley, C. A.

C. A. Blockley and D. Walls, “Intensity fluctuations in a frequency down-conversion process with three-level atoms,” Phys. Rev. A 43, 5049–5056 (1991).
[Crossref] [PubMed]

Branciard, C.

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Broadbent, C. J.

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

Brodutch, A.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

A. Brodutch and D. R. Terno, “Quantum discord, local operations, and Maxwell’s demons,” Phys. Rev. A 81, 062103 (2010).
[Crossref]

Brune, M.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Brunner, N.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Buzek, V.

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

Cable, H.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Caldeira, A. O.

F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
[Crossref]

Campbell, S.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Canalcanti, D.

P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref] [PubMed]

Castelano, L. K.

F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
[Crossref]

Cavalcanti, D.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

Cavalcanti, E. G.

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

Caves, C. M.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[Crossref] [PubMed]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Chen, A. X.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

Chen, C. M.

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

Chen, G. Y.

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

Chen, K.

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Chen, L.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

Chen, S. L.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

Chen, Y. A.

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Chen, Y. N.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

Chen, Y. X.

Y. X. Chen and S. W. Li, “Quantum correlations in topological quantum phase transitions,” Phys. Rev. A 81, 032120 (2010).
[Crossref]

Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
[Crossref]

Chen, Y.-L.

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

Cheng, G.

W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
[Crossref]

Chizhov, A. V.

A. V. Chizhov and R. G. Nazmitdinov, “Entanglement control in coupled two-mode boson systems,” Phys. Rev. A 78, 064302 (2008).
[Crossref]

Cirac, J. I.

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

Clauser, J. F.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Collett, M. J.

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
[Crossref] [PubMed]

Coudreau, T.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Cramer, M.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Cucchietti, F. M.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

Cuccoli, A.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Das, S.

E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
[Crossref]

Datta, A.

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[Crossref] [PubMed]

Demianowicz, M.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

Divincenzo, D. P.

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Doherty, A. C.

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Dowling, J. P.

J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).
[Crossref]

Duzzioni, E. I.

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Eleuch, H.

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
[Crossref]

Evers, J.

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

Fabre, C.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Fanchini, F. F.

F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
[Crossref]

Fang, A.-P.

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

Ferraro, A.

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

Franco, C. D.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Garcia-Patron, R.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Ghafoor, F.

Giedke, G.

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

Giorda, P.

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref] [PubMed]

Guang-Ming, H.

C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
[Crossref]

Haroche, S.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Hassouni, Y.

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

He, Q. L.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

Henderson, L.

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
[Crossref]

Hillery, M.

S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
[Crossref]

Holt, R. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Horne, M. A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Howell, J. C.

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

Hu, X.

W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
[Crossref]

Huelga, S. F.

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Ikram, M.

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
[Crossref]

Illuminati, F.

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

Jelezko, F.

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Jeong, H.

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Jones, S. J.

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Keitel, C.

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

Keller, G.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Kiffner, M.

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

Kim, M. S.

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Kimble, H. J.

Knight, P. L.

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

S. M. Barnett and P. L. Knight, “Squeezing in correlated quantum systems,” J. Mod. Opt. 34, 841–853 (1987).
[Crossref]

Kogias, I.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

Kruger, O.

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

Lambert, N.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

Langford, N. K.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Laurat, J.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Lee, A. R.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

Lee, C. T.

C. T. Lee, “Measure of the nonclassicality of nonclassical states,” Phys. Rev. A 44, R2775–R2778 (1991).
[Crossref] [PubMed]

Lee, H. W.

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

Lee, J.

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

Lee, S. Y.

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

Li, C. M.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

Li, F. L.

L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
[Crossref]

Li, F.-L.

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

Li, G.

M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
[Crossref]

Li, G. X.

C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
[Crossref]

Li, H.-R.

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

Li, S. W.

Y. X. Chen and S. W. Li, “Quantum correlations in topological quantum phase transitions,” Phys. Rev. A 81, 032120 (2010).
[Crossref]

Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
[Crossref]

Li, Y. N.

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Ma, T.

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

Marian, P.

P. Marian and T. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state,” Phys. Rev. Lett. 101, 220403 (2008).
[Crossref] [PubMed]

Marian, T.

P. Marian and T. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state,” Phys. Rev. Lett. 101, 220403 (2008).
[Crossref] [PubMed]

Meschede, D.

D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[Crossref] [PubMed]

Milburn, G. J.

J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).
[Crossref]

Milman, P.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

Miranowicz, A.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

Modi, K.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Mohamed, A.-B.

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

Muller, G.

D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[Crossref] [PubMed]

Navascues, M.

P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref] [PubMed]

Nazmitdinov, R. G.

A. V. Chizhov and R. G. Nazmitdinov, “Entanglement control in coupled two-mode boson systems,” Phys. Rev. A 78, 064302 (2008).
[Crossref]

Neumann, P.

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Nha, H.

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

Nori, F.

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

Ollivier, H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Ota, Y.

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

Pan, J. W.

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Paris, M. G. A.

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref] [PubMed]

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

M. G. A. Paris, “Entanglement and visibility at the output of a mach-zehnder interferometer,” Phys. Rev. A 59, 1615–1621 (1999).
[Crossref]

Paterek, T.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

Paternostro, M.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Piani, M.

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref] [PubMed]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Pironio, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Plastina, F.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

Plenio, M. B.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Pryde, G. J.

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

Qamar,

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

Qamar, S.

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
[Crossref]

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

Quintino, M. T.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

Qureshi, H. S.

Ragy, S.

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

Raimond, J. M.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Ramelow, S.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Reid, M. D.

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

Rong, L. H.

L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
[Crossref]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Rossatto, D. Z.

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

Saif, F.

Sanders, B. C.

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[Crossref] [PubMed]

Saunders, D. J.

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

Scarani, V.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Schneeloch, J.

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

Schrodinger, E.

E. Schrodinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Scully, M. O.

H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
[Crossref] [PubMed]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997), Chap. 14.
[Crossref]

Serafini, A.

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

Sete, E. A.

E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
[Crossref]

Shaji, A.

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[Crossref] [PubMed]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Shimony, A.

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

Siena, S. D.

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

Skrzypczyk, P.

P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref] [PubMed]

Smolin, J. A.

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Son, W.

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

Steinlechner, F.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Tahira, R.

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

Tan, H. T.

H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
[Crossref]

Tan, S. M.

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
[Crossref] [PubMed]

Terno, D. R.

A. Brodutch and D. R. Terno, “Quantum discord, local operations, and Maxwell’s demons,” Phys. Rev. A 81, 062103 (2010).
[Crossref]

Tesfa, S.

S. Tesfa, “Continuous variable quantum discord in a correlated emission laser,” Optics Communications 285, 830–837 (2012).
[Crossref]

S. Tesfa, “Entanglement amplification in a nondegenerate three-level cascade laser,” Phys. Rev. A 74, 043816 (2006).
[Crossref]

Tiaz, G.

Treps, N.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Ullah, S.

Ursin, R.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Vaia, R.

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Vedral, V.

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
[Crossref]

Vertesi, T.

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

Vidal, G.

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

Villas-Boas, C. J.

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

Walborn, S. P.

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

Waldherr, G.

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Walls, D.

C. A. Blockley and D. Walls, “Intensity fluctuations in a frequency down-conversion process with three-level atoms,” Phys. Rev. A 43, 5049–5056 (1991).
[Crossref] [PubMed]

Walls, D. F.

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
[Crossref] [PubMed]

H. J. Kimble and D. F. Walls, “Squeezed states of the electromagnetic field: Introduction to feature issue,” J. Opt. Soc. Am. B 4, 1449 (1987).

Walther, H.

D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[Crossref] [PubMed]

Wang, C.

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

Wang, S.

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

Wang, T. J.

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

Wang, Z. X.

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

Watrous, J.

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref] [PubMed]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Wehner, S.

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

Werlang, T.

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

Werner, R. F.

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

Wiseman, H. M.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

Wittmann, B.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Wodkiewicz, K.

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

Wolf, M. M.

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

Wootters, W. K.

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

Wrachtrup, J.

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Xin, C.

C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
[Crossref]

Xiong, H.

L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
[Crossref]

H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
[Crossref] [PubMed]

Xu, J.

J. Xu, “Quantifying coherence of Gaussian states,” Phys. Rev. A 93, 032111 (2016).
[Crossref]

Xu, J. B.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

Yamaguchi, F.

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

Yang, Y.

L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
[Crossref]

Yao, D. X.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

Yin, Z.

Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
[Crossref]

Zeilinger, A.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

Zhang, J. S.

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

Zhang, P.

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

Zhang, Q.

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

Zhang, Y. Q.

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

Zhong, W.

W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
[Crossref]

Zhou, L.

L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
[Crossref]

Zhu, S. Y.

H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
[Crossref]

Zubairy, M. S.

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
[Crossref]

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
[Crossref]

L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
[Crossref]

H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
[Crossref]

H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
[Crossref] [PubMed]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997), Chap. 14.
[Crossref]

Zurek, W. H.

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

Appl. Opt. (2)

Chin. Phys. (1)

L. H. Rong, F. L. Li, and Y. Yang, “Entangling two single mode Gaussian states by use of a beam splitter,” Chin. Phys. 15, 2947–2952 (2006).
[Crossref]

Chin. Phys. Soc. (1)

C. Xin, H. Guang-Ming, and G. X. Li, “Nonlocality and purity in atom-field coupling system,” Chin. Phys. Soc. 14, 223–230 (2005).
[Crossref]

Eur. Phys. J. D (3)

P. Milman, A. Auffeves, F. Yamaguchi, M. Brune, J. M. Raimond, and S. Haroche, “A proposal to test bell’s inequalities with mesoscopic non-local states in cavity QED,” Eur. Phys. J. D 32, 233–239 (2005).
[Crossref]

J. S. Zhang, L. Chen, M. Abdel-Aty, and A. X. Chen, “Sudden death and robustness of quantum correlations in the weak- or strong-coupling regime,” Eur. Phys. J. D 66, 2–8 (2012).
[Crossref]

A.-B. Mohamed and H. Eleuch, “Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity,” Eur. Phys. J. D 69, 191 (2015).
[Crossref]

J. Mod. Opt. (1)

S. M. Barnett and P. L. Knight, “Squeezing in correlated quantum systems,” J. Mod. Opt. 34, 841–853 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. A: Math. Gen. (1)

L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen. 34, 6899–6905 (2001).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

S. Y. Lee, S. Qamar, H. W. Lee, and M. S. Zubairy, “Entanglement in a parametric converter,” J. Phys. B: At. Mol. Opt. Phys. 41, 145504 (2008).
[Crossref]

Laser Phys. Lett. (1)

W. Zhong, G. Cheng, and X. Hu, “One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser,” Laser Phys. Lett. 15, 065204 (2018).
[Crossref]

Math. Proc. Cambridge Philos. Soc. (1)

E. Schrodinger, “Discussion of probability relations between separated systems,” Math. Proc. Cambridge Philos. Soc. 31, 555–563 (1935).
[Crossref]

Nature Phys. (1)

D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, “Experimental EPR-steering using bell-local states,” Nature Phys. 6, 845–849 (2010).
[Crossref]

New J. Phys. (2)

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering,” New J. Phys. 14, 053030 (2012).
[Crossref]

F. F. Fanchini, L. K. Castelano, and A. O. Caldeira, “Entanglement versus quantum discord in two coupled double quantum dots,” New J. Phys. 12, 073009 (2010).
[Crossref]

Optics Communications (1)

S. Tesfa, “Continuous variable quantum discord in a correlated emission laser,” Optics Communications 285, 830–837 (2012).
[Crossref]

Phil. Trans. R. Soc. Lond. A (1)

J. P. Dowling and G. J. Milburn, “Quantum technology: the second quantum revolution,” Phil. Trans. R. Soc. Lond. A 361, 1655–1674 (2003).
[Crossref]

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[Crossref]

Phys. Rev. A (35)

Y. N. Chen, C. M. Li, N. Lambert, S. L. Chen, Y. Ota, G. Y. Chen, and F. Nori, “Temporal steering inequality,” Phys. Rev. A 89, 032112 (2014).
[Crossref]

A. V. Chizhov and R. G. Nazmitdinov, “Entanglement control in coupled two-mode boson systems,” Phys. Rev. A 78, 064302 (2008).
[Crossref]

C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state entanglement and quantum error correction,” Phys. Rev. A 54, 3824–3851 (1996).
[Crossref] [PubMed]

G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65, 032314 (2002).
[Crossref]

J. Xu, “Quantifying coherence of Gaussian states,” Phys. Rev. A 93, 032111 (2016).
[Crossref]

H. T. Tan, S. Y. Zhu, and M. S. Zubairy, “Continuous-variable entanglement in a correlated spontaneous emission laser,” Phys. Rev. A 72, 022305 (2005).
[Crossref]

L. Zhou, H. Xiong, and M. S. Zubairy, “Single atom as a macroscopic entanglement source,” Phys. Rev. A 74, 022321 (2006).
[Crossref]

S. Tesfa, “Entanglement amplification in a nondegenerate three-level cascade laser,” Phys. Rev. A 74, 043816 (2006).
[Crossref]

M. Kiffner, M. S. Zubairy, J. Evers, and C. Keitel, “Two-mode single-atom laser as a source of entangled light,” Phys. Rev. A 75, 033816 (2007).
[Crossref]

M. Ikram, G. Li, and M. S. Zubairy, “Entanglement generation in a two-mode quantum beat laser,” Phys. Rev. A 76, 042317 (2007).
[Crossref]

S. Qamar, F. Ghafoor, M. Hillery, and M. S. Zubairy, “Quantum beat laser as a source of entangled radiation,” Phys. Rev. A 77, 062308 (2008).
[Crossref]

S. Qamar, S. Al-Amri, Qamar, and M. S. Zubairy, “Entangled radiation via a Raman-driven quantum-beat laser,” Phys. Rev. A 80, 033818 (2009).
[Crossref]

A.-P. Fang, Y.-L. Chen, F.-L. Li, H.-R. Li, and P. Zhang, “Generation of two-mode Gaussian-type entangled states of light via a quantum beat laser,” Phys. Rev. A 81, 012323 (2010).
[Crossref]

R. Tahira, M. Ikram, H. Nha, and M. S. Zubairy, “Gaussian-state entanglement in a quantum beat laser,” Phys. Rev. A 83, 054304 (2011).
[Crossref]

K. Banaszek and K. Wodkiewicz, “Nonlocality of the Einstein-Podolsky-Rosen state in the Wigner representation,” Phys. Rev. A 58, 4345–4347 (1998).
[Crossref]

Q. L. He, J. B. Xu, D. X. Yao, and Y. Q. Zhang, “Sudden transition between classical and quantum decoherence in dissipative cavity QED and stationary quantum discord,” Phys. Rev. A 84, 022312 (2011).
[Crossref]

A. Ferraro, L. Aolita, D. Cavalcanti, F. M. Cucchietti, and A. Acin, “Almost all quantum states have nonclassical correlations,” Phys. Rev. A 81, 052318 (2010).
[Crossref]

A. Brodutch and D. R. Terno, “Quantum discord, local operations, and Maxwell’s demons,” Phys. Rev. A 81, 062103 (2010).
[Crossref]

Y. X. Chen, S. W. Li, and Z. Yin, “Quantum correlations in a cluster like system,” Phys. Rev. A 82, 052320 (2010).
[Crossref]

Y. X. Chen and S. W. Li, “Quantum correlations in topological quantum phase transitions,” Phys. Rev. A 81, 032120 (2010).
[Crossref]

S. Campbell, T. J. G. Apollaro, C. D. Franco, L. Banchi, A. Cuccoli, R. Vaia, F. Plastina, and M. Paternostro, “Propagation of nonclassical correlations across a quantum spin chain,” Phys. Rev. A 84, 052316 (2011).
[Crossref]

M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: Nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002).
[Crossref]

M. G. A. Paris, “Entanglement and visibility at the output of a mach-zehnder interferometer,” Phys. Rev. A 59, 1615–1621 (1999).
[Crossref]

B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992).
[Crossref] [PubMed]

M. T. Quintino, T. Vertesi, D. Cavalcanti, R. Augusiak, M. Demianowicz, A. Acin, and N. Brunner, “Inequivalence of entanglement, steering, and bell nonlocality for general measurements,” Phys. Rev. A 92, 032107 (2015).
[Crossref]

H. Jeong, J. Lee, and M. S. Kim, “Dynamics of nonlocality for a two-mode squeezed state in a thermal environment,” Phys. Rev. A 61, 052101 (2000).
[Crossref]

E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, “Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. A 80, 032112 (2009).
[Crossref]

J. Schneeloch, C. J. Broadbent, S. P. Walborn, E. G. Cavalcanti, and J. C. Howell, “Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations,” Phys. Rev. A 87, 062103 (2013).
[Crossref]

C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, “One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering,” Phys. Rev. A 85, 010301 (2012).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

E. A. Sete, H. Eleuch, and S. Das, “Semiconductor cavity QED with squeezed light: Nonlinear regime,” Phys. Rev. A 84, 053817 (2011).
[Crossref]

C. A. Blockley and D. Walls, “Intensity fluctuations in a frequency down-conversion process with three-level atoms,” Phys. Rev. A 43, 5049–5056 (1991).
[Crossref] [PubMed]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

C. T. Lee, “Measure of the nonclassicality of nonclassical states,” Phys. Rev. A 44, R2775–R2778 (1991).
[Crossref] [PubMed]

M. G. A. Paris, F. Illuminati, A. Serafini, and S. D. Siena, “Purity of Gaussian states: Measurement schemes and time evolution in noisy channels,” Phys. Rev. A 68, 012314 (2003).
[Crossref]

Phys. Rev. Lett. (20)

S. L. Chen, N. Lambert, C. M. Li, A. Miranowicz, Y. N. Chen, and F. Nori, “Quantifying non-markovianity with temporal steering,” Phys. Rev. Lett. 116, 020503 (2016).
[Crossref] [PubMed]

D. Meschede, H. Walther, and G. Muller, “One-atom maser,” Phys. Rev. Lett. 54, 551–554 (1985).
[Crossref] [PubMed]

H. Xiong, M. O. Scully, and M. S. Zubairy, “Correlated spontaneous emission laser as an entanglement amplifier,” Phys. Rev. Lett. 94, 023601 (2005).
[Crossref] [PubMed]

J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Phys. Rev. Lett. 23, 880–884 (1969).
[Crossref]

A. Datta, A. Shaji, and C. M. Caves, “Quantum discord and the power of one qubit,” Phys. Rev. Lett. 100, 050502 (2008).
[Crossref] [PubMed]

M. Piani, P. Horodecki, and R. Horodecki, “No-local-broadcasting theorem for multipartite quantum correlations,” Phys. Rev. Lett. 100, 090502 (2008).
[Crossref] [PubMed]

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66, 252–255 (1991).
[Crossref] [PubMed]

G. Giedke, M. M. Wolf, O. Kruger, R. F. Werner, and J. I. Cirac, “Entanglement of formation for symmetric Gaussian states,” Phys. Rev. Lett. 91, 107901 (2003).
[Crossref] [PubMed]

P. Marian and T. Marian, “Entanglement of formation for an arbitrary two-mode Gaussian state,” Phys. Rev. Lett. 101, 220403 (2008).
[Crossref] [PubMed]

P. Giorda and M. G. A. Paris, “Gaussian quantum discord,” Phys. Rev. Lett. 105, 020503 (2010).
[Crossref] [PubMed]

G. Adesso and A. Datta, “Quantum versus classical correlations in Gaussian states,” Phys. Rev. Lett. 105, 030501 (2010).
[Crossref] [PubMed]

D. Z. Rossatto, T. Werlang, E. I. Duzzioni, and C. J. Villas-Boas, “Nonclassical behavior of an intense cavity field revealed by quantum discord,” Phys. Rev. Lett. 107, 153601 (2011).
[Crossref] [PubMed]

H. M. Wiseman, S. J. Jones, and A. C. Doherty, “Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox,” Phys. Rev. Lett. 98, 140402 (2007).
[Crossref] [PubMed]

H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett. 88, 017901 (2001).
[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

P. Skrzypczyk, M. Navascues, and D. Canalcanti, “Quantifying Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 112, 180404 (2014).
[Crossref] [PubMed]

I. Kogias, A. R. Lee, S. Ragy, and G. Adesoo, “Quantification of Gaussian quantum steering,” Phys. Rev. Lett. 114, 060403 (2015).
[Crossref] [PubMed]

M. Piani and J. Watrous, “Necessary and sufficient quantum information characterization of Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 114, 060404 (2015).
[Crossref] [PubMed]

C. M. Li, K. Chen, Y. N. Chen, Q. Zhang, Y. A. Chen, and J. W. Pan, “Genuine high-order Einstein-Podolsky-Rosen steering,” Phys. Rev. Lett. 115, 010402 (2015).
[Crossref] [PubMed]

G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and J. Wrachtrup, “Violation of a temporal Bell inequality for single spins in a diamond defect center,” Phys. Rev. Lett. 107, 090401 (2011).
[Crossref] [PubMed]

Physics (New York) (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (New York) 1, 195–200 (1964).

Quantum Inf. Process. (1)

K. Berrada, S. Abdel-Khalek, H. Eleuch, and Y. Hassouni, “Beam splitting and entanglement generation: excited coherent states,” Quantum Inf. Process. 12, 69–82 (2013).
[Crossref]

Rev. Mod. Phys. (6)

N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, “Bell nonlocality,” Rev. Mod. Phys. 86, 419–478 (2014).
[Crossref]

K. Modi, A. Brodutch, H. Cable, T. Paterek, and V. Vedral, “The classical-quantum boundary for correlations: Discord and related measures,” Rev. Mod. Phys. 84, 1655–1707 (2012).
[Crossref]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

J. M. Raimond, M. Brune, and S. Haroche, “Colloquium: manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001).
[Crossref]

Sci. Rep. (3)

Z. X. Wang, S. Wang, T. Ma, T. J. Wang, and C. Wang, “Gaussian entanglement generation from coherence using beam splitters,” Sci. Rep. 6, 38002 (2016).
[Crossref]

H. S. Qureshi, S. Ullah, and F. Ghafoor, “Hierarchy of quantum correlations using a linear beam splitter,” Sci. Rep. 8, 16288 (2018).
[Crossref] [PubMed]

G. Y. Chen, S. L. Chen, Y. N. Li, and C. M. Chen, “Examining non-locality and quantum coherent dynamics induced by a common reservoir,” Sci. Rep. 3, 2514 (2013).
[Crossref] [PubMed]

Other (2)

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997), Chap. 14.
[Crossref]

G. Adesso, “Entanglement of Gaussian states,” arXiv:quant-ph/0702069 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of correlated emission laser. A laser cavity with the atomic medium, a driving field and two single modes of the cavity field. (b) The model atom of the cavity medium. The two single modes of the cavity field are resonant with levels | a | b and | b | c , respectively. The dipole forbidden transition between the ground state | a and the upper excited state | c is induced by a strong classical field.
Fig. 2
Fig. 2 Four kinds of quantum correlations; (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum discord of the resulting TMGS against dimensionless interaction time gt for fixed values of μ 1 = μ 2 = 1 , τ 1 = τ 2 = 0.44 , κ = 0, ra = 10 kHz, g = 16 kHz, γ = 20 kHz, and ϕ 1 = ϕ 2 = φ = 0 . In each case, the dotted-, dashed-, and solid-green(red) curves show the results for the strongly driven case of Eqs. (27)-(33) (general case of Eqs. (19)-(25)) with Ω = 2160 kHz, 2660 kHz, and 3160 kHz, respectively.
Fig. 3
Fig. 3 Four kinds of quantum correlations; (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum discord of the resulting TMGS against dimensionless interaction time gt for Ω = 2160 kHz. In each case, the dotted-orange, dashed-blue, and solid-purple lines are for κ = 0, 0.005 kHz, and 0.009 kHz, respectively. For all the insets κ = 0.1 kHz. The other system parameters are the same as used in Fig. 2.
Fig. 4
Fig. 4 Four kinds of quantum correlations; (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum discord of the resulting TMGS against dimensionless interaction time gt for Ω = 2160 kHz. In each case, the dotted-orange, dashed-blue, and solid-purple lines are for τ 1 = τ 2 = 0.34 , 0.37, and 0.40, respectively. The other system parameters are the same as used in Fig. 2.
Fig. 5
Fig. 5 Four kinds of quantum correlations; (a) Bell’s combination, (b) quantum steering, (c) quantum entanglement, and (d) quantum discord of the resulting TMGS against dimensionless interaction time gt for Ω = 2160 kHz. In each case, the dotted-orange, dashed-blue, and solid-purple lines are for μ 1 = μ 2 = 0.75 , 0.85, and 1, respectively. The other system parameters are the same as used in Fig. 2.

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

V = ( g 1 a 1 | a b | + g 2 a 2 | b c | ) 2 Ω e i φ | a c | + H . c . ,
ρ ˙ f = i T r a t o m [ V , ρ ] , = i g 1 ( a 1 ρ a b ρ a b a 1 ) i g 2 ( a 2 ρ b c ρ b c a 2 ) + H . c .
ρ ˙ i j = i k ( V i k ρ k j ρ i k V k j ) 1 2 k ( Γ i k ρ k j + ρ i k Γ k j )
ρ ˙ a b = γ ρ a b + i Ω 2 e i φ ρ c b i g 1 ( a 1 ρ b b ρ a a a 1 ) + i g 2 ρ a c a 2 ,
ρ ˙ b c = γ ρ b c i Ω 2 e i φ ρ b a i g 2 ( a 2 ρ c c ρ b b a 2 ) i g 1 a 1 ρ a c ,
ρ ˙ a a = γ ρ a a + i Ω 2 ( e i φ ρ c a e i φ ρ a c ) + r a ρ f ,
ρ ˙ b b = 0 ,
ρ ˙ c c = γ ρ c c + i Ω 2 ( e i φ ρ a c e i φ ρ c a ) ,
ρ ˙ a c = γ ρ a c i Ω 2 e i φ ( ρ a a ρ c c ) ,
ρ ˙ f = [ ( β 11 + β 11 * ) a 1 ρ f a 1 β 11 * a 1 a 1 ρ f β 11 ρ f a 1 a 1 ] + [ ( β 22 + β 22 * ) a 2 ρ f a 2 β 22 * a 2 a 2 ρ f β 22 ρ f a 2 a 2 ] + [ ( β 21 + β 12 * ) a 2 ρ f a 1 β 12 * a 1 a 2 ρ f β 21 ρ f a 1 a 2 ] e i φ + [ ( β 21 * + β 12 ) a 1 ρ f a 2 β 21 * a 1 a 2 ρ f β 12 ρ f a 1 a 2 ] e i φ
β 11 = 3 g 1 2 r a Ω 2 4 ( Ω 2 + γ 2 ) ( γ 2 + Ω 2 / 4 ) ,
β 22 = g 2 2 r a ( Ω 2 + γ 2 ) ,
β 21 = i g 1 g 2 r a Ω ( Ω 2 2 γ 2 ) 4 γ ( Ω 2 + γ 2 ) ( γ 2 + Ω 2 / 4 ) ,
β 12 = i g 1 g 2 r a Ω γ ( Ω 2 + γ 2 ) ,
ρ ˙ f = i = 1 2 κ i ( [ a i ρ f , a i ] + [ a i , ρ f a i ] ) ,
ρ ˙ f = κ 1 ( a 1 a 1 ρ f + ρ f a 1 a 1 2 a 1 ρ f a 1 ) κ 2 ( a 2 a 2 ρ f + ρ f a 2 a 2 2 a 2 ρ f a 2 ) .
ρ ˙ f = [ ( β 11 + β 11 * ) a 1 ρ f a 1 β 11 * a 1 a 1 ρ f β 11 ρ f a 1 a 1 ] + [ ( β 22 + β 22 * ) a 2 ρ f a 2 β 22 * a 2 a 2 ρ f β 22 ρ f a 2 a 2 ] + [ ( β 21 + β 12 * ) a 2 ρ f a 1 β 12 * a 1 a 2 ρ f β 21 ρ f a 1 a 2 ] e i φ + [ ( β 21 * + β 12 ) a 1 ρ f a 2 β 21 * a 1 a 2 ρ f β 12 ρ f a 1 a 2 ] e i φ κ 1 ( a 1 a 1 ρ f + ρ f a 1 a 1 2 a 1 ρ f a 1 ) κ 2 ( a 2 a 2 ρ f + ρ f a 2 a 2 2 a 2 ρ f a 2 ) .
d d t O ^ = T r [ O ^ ρ ˙ f ] .
d d t a 1 a 1 = [ ( β 11 + β 11 * ) 2 κ 1 ] a 1 a 1 + β 12 * e i φ a 1 a 2 + β 12 e i φ a 1 a 2 + ( β 11 + β 11 * ) ,
d d t a 2 a 2 = [ ( β 22 + β 22 * ) + 2 κ 2 ] a 2 a 2 β 21 e i φ a 1 a 2 β 21 * e i φ a 1 a 2 ,
d d t a 1 a 2 = [ ( β 11 β 22 * ) ( κ 1 + κ 2 ) ] a 1 a 2 β 21 * e i φ β 21 * e i φ a 1 a 1 + β 12 e i φ a 2 a 2 ,
d d t a 1 a 2 = [ ( β 11 * β 22 ) ( κ 1 + κ 2 ) ] a 1 a 2 β 21 e i φ β 21 e i φ a 1 a 1 + β 12 * e i φ a 2 a 2 ,
d d t a 1 a 2 = [ ( β 11 β 22 ) ( κ 1 + κ 2 ) ] a 1 a 2 β 21 e i φ a 1 a 1 + β 12 e i φ a 2 a 2 ,
d d t a 1 a 1 = 2 ( β 11 κ 1 ) a 1 a 1 + 2 β 12 e i φ a 1 a 2 ,
d d t a 2 a 2 = 2 ( β 22 + κ 2 ) a 2 a 2 2 β 21 e i φ a 1 a 2 .
ρ ˙ f = i α [ ( a 1 a 2 ρ f a 2 ρ f a 1 ) e i φ + ( a 1 a 2 ρ f a 1 ρ f a 2 ) e i φ ( ρ f a 1 a 2 a 2 ρ f a 1 ) e i φ ( ρ f a 1 a 2 a 1 ρ f a 2 ) e i φ ] κ 1 ( a 1 a 1 ρ f + ρ f a 1 a 1 2 a 1 ρ f a 1 ) κ 2 ( a 2 a 2 ρ f + ρ f a 2 a 2 2 a 2 ρ f a 2 ) ,
a 1 a 1 = e 2 κ t 2 [ 2 α sinh  ( 2 α t ) + ( c 1 + c 2 1 ) cosh  ( 2 α t ) ( c 2 c 1 ) ] ,
a 2 a 2 = e 2 κ t 2 [ 2 α sinh  ( 2 α t ) + ( c 1 + c 2 1 ) cosh  ( 2 α t ) + ( c 2 c 1 ) ] ,
a 1 a 2 = i e 2 κ t i φ 2 [ 2 α cosh  ( 2 α t ) + ( c 1 + c 2 1 ) sinh  ( 2 α t ) ] ,
a 1 a 2 = i e 2 κ t + i φ 2 [ 2 α cosh  ( 2 α t ) + ( c 1 + c 2 1 ) sinh  ( 2 α t ) ] ,
a 1 a 1 = e 2 κ t 2 [ ( | d 2 | e i ( ϕ 2 2 φ ) | d 1 | e i ϕ 1 ) cosh  ( 2 α t ) | d 1 | e i ϕ 1 | d 2 | e i ( ϕ 2 2 φ ) ] ,
a 2 a 2 = e 2 κ t 2 [ ( | d 1 | e i ( ϕ 1 + 2 φ ) | d 2 | e i ϕ 2 ) cosh  ( 2 α t ) | d 1 | e i ( ϕ 1 2 ϕ ) | d 2 | e i ϕ 2 ] ,
a 1 a 2 = i e 2 κ t 2 [ ( | d 1 | e i ( ϕ 1 + φ ) | d 2 | e i ( ϕ 2 φ ) ) sinh  ( 2 α t ) ] ,
χ ( ξ 1 , ξ 2 ) = exp  ( 1 2 ξ V i n ξ ) ,
V i n = ( V 1 0 0 V 2 ) ,
c j = 1 2 + τ j 2 + 1 / ( 2 u j ) 2 1 / 4 1 2 τ j , | d j | = τ j τ j 2 + 1 / ( 2 u j ) 2 1 / 4 1 2 τ j .
χ ( ξ 1 , ξ 2 ) = exp  ( 1 2 ξ V o u t ξ ) .
V o u t = ( V 1 V 3 V 3 T V 2 ) ,
W T M G S ( α 1   , α 2   ) = 4 π 2 Π ( α 1   , α 2   ) ,
B = Π ( 0 , 0 ) + Π ( J 1 , 0 ) + Π ( 0 , J 2 ) Π ( J 1 , J 2 ) ,
B = P { 1 + 2 exp  [ b 2 Y 1 ] ln  ( x ) exp  [ 2 ln  ( x ) Y 1 Y 2 ] } .
S V 1 V 2 = max  { 0 , 1 2 log 2 det  V 1 4 det  V o u t } .
E = max  { 0 , log 2 ( 2 η ˜ ) } ,
D = h ( β ) h ( η ) h ( η + ) + h ( σ ) ,
σ = α + 2 α β + 2 ϵ 1 + 2 β ,

Metrics