Abstract

We present an effective method for direct fiber coupling of a quantum dot (QD) that is deterministically incorporated into a cylindrical mesa. For precise positioning of the fiber with respect to the QD-mesa, we use a scanning procedure relying on interference of light reflected back from the fiber end-face and the top surface of the mesa, applicable for both single-mode and multi-mode fibers. The central part of the fiber end-face is etched to control the required distance between the top surface of the mesa and the fiber core. Emission around 1260 nm from a fiber-coupled InGaAs/GaAs QD is demonstrated and its stability is proven over multiple cooling cycles. Moreover, a single photon character of emission from such system for a line emitting above 1200 nm is proven experimentally by photon autocorrelation measurements with an obtained value of the second order correlation function at zero time-delay well below 0.5.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

Raphaël S. Daveau, Krishna C. Balram, Tommaso Pregnolato, Jin Liu, Eun H. Lee, Jin D. Song, Varun Verma, Richard Mirin, Sae Woo Nam, Leonardo Midolo, Søren Stobbe, Kartik Srinivasan, and Peter Lodahl
Optica 4(2) 178-184 (2017)

Large ordered arrays of single photon sources based on II–VI semiconductor colloidal quantum dot

Qiang Zhang, Cuong Dang, Hayato Urabe, Jing Wang, Shouheng Sun, and Arto Nurmikko
Opt. Express 16(24) 19592-19599 (2008)

High-brightness single photon source from a quantum dot in a directional-emission nanocavity

Mitsuru Toishi, Dirk Englund, Andrei Faraon, and Jelena Vučković
Opt. Express 17(17) 14618-14626 (2009)

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
    [Crossref]
  2. R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
    [Crossref]
  3. D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
    [Crossref]
  4. M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
    [Crossref]
  5. M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
    [Crossref]
  6. C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
    [Crossref]
  7. B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
    [Crossref]
  8. X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
    [Crossref]
  9. T. Grosjean, M. Mivelle, G. W. Burr, and F. I. Baida, “Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber,” Opt. Express 21(2), 1762–1772 (2013).
    [Crossref]
  10. H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
    [Crossref]
  11. S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
    [Crossref]
  12. G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
    [Crossref]
  13. H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
    [Crossref]
  14. H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
    [Crossref]
  15. Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).
  16. P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
    [Crossref]
  17. S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
    [Crossref]
  18. P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
    [Crossref]
  19. A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
    [Crossref]
  20. R. Windecker, M. Fleischer, and H. J. Tiziani, “Low-coherence fiber-optic sensor with a large numerical aperture for topographic measurements,” Appl. Opt. 37(19), 4080–4083 (1998).
    [Crossref]
  21. S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
    [Crossref]
  22. K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
    [Crossref]
  23. M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
    [Crossref]
  24. X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
    [Crossref]
  25. L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
    [Crossref]
  26. F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
    [Crossref]
  27. P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).
  28. B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
    [Crossref]
  29. N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
    [Crossref]
  30. T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
    [Crossref]

2018 (5)

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

2017 (3)

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

2016 (4)

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

2015 (6)

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

2014 (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

2013 (2)

T. Grosjean, M. Mivelle, G. W. Burr, and F. I. Baida, “Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber,” Opt. Express 21(2), 1762–1772 (2013).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

2011 (3)

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

2007 (1)

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

2005 (1)

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

2001 (1)

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

1998 (1)

Aghaeimeibodi, S.

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

Alloing, B.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Aoki, T.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

Arakawa, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Badolato, A.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Baida, F. I.

Balram, K. C.

Bennett, C. H.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Bimberg, D.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Bouwmeester, D.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Bowers, J. E.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Braakman, F. R.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Brassard, G.

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Buchs, G.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Burger, S.

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Burr, G. W.

Buyukkaya, M. A.

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

Cadeddu, D.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Cerrotta, S.

S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
[Crossref]

Chen, M.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Chen, Z. S.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Chonan, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

Claudon, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Davanco, M.

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Davanço, M.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

Daveau, R. S.

Ding, X.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Dlubek, M.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Duan, Z.-C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Dusanowski, L.

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Dybka, K.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Dyrkacz, M.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Fiore, A.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Fischbach, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Fleischer, M.

Frey, J. A.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Fujiwara, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Garcia Santiago, X.

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

Gawarecki, K.

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Gérard, J. M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Gobet, M.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Gossard, A. C.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Gregersen, N.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Grosjean, T.

Gschrey, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Guffarth, F.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Hammura, K.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Harada, T.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

Harris, J.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

He, Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Heindel, T.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Heitz, R.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Herrmann, S.

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

Heuser, T.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Höfling, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Holewa, P.

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

Kaganskiy, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Kamp, M.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Kato, S.

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

Kovsh, A. R.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Krüger, L.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Kumano, H.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Kuroda, T.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

Ledentsov, N. N.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Lee, C. M.

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Lee, Ch. M.

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

Lee, E. H.

Lee, Y. H.

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Li, L. H.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Lim, H. J.

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Liu, J.

Liu, X.

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Lodahl, P.

Löffler, W.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Lu, C.-Y.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Ma, B.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Maier, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Mano, T.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

Mar, J.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Mergo, P.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Midolo, L.

Miki, S.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Mirin, R.

Mivelle, M.

Miyazawa, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Monat, C.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Morel, E. N.

S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
[Crossref]

Mrowinski, P.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Munsch, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Musial, A.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Muto, S.

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Nakajima, H.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

Nam, S. W.

Nambu, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Ni, H. Q.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Niu, Z. C.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Noda, T.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Norman, J.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Odashima, S.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Pan, J.-W.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Phillips, R. T.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Poggio, M.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Pomplun, J.

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

Post, V. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Poturaj, K.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Pregnolato, T.

Provine, J.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

Quandt, D.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Rakher, M. T.

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Reitzenstein, S.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Richardson, C. J. K.

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

Rivoire, K.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

Rockstuhl, C.

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

Rodt, S.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Sakoda, K.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

Sakuma, Y.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Sapienza, L.

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

Sarmiento, T.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

Sasaki, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Sasakura, H.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Schlehahn, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

Schliwa, A.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Schmidt, F.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

Schmidt, R.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schnauber, P.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Schneider, C.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Schneider, P.-I.

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

Schuh, D.

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Schulze, J.-H.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Seifried, M.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Sek, G.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Shambat, G.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

Shang, X. J.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Snijders, H.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Song, J. D.

Srinivasan, K.

R. S. Daveau, K. C. Balram, T. Pregnolato, J. Liu, E. H. Lee, J. D. Song, V. Verma, R. Mirin, S. W. Nam, L. Midolo, S. Stobbe, K. Srinivasan, and P. Lodahl, “Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide,” Optica 4(2), 178–184 (2017).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Srocka, N.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Stepanov, P.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Stier, O.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Stobbe, S.

Strittmatter, A.

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Suemune, I.

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Takatsu, M.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Takemoto, K.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Takeuchi, S.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Teissier, J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Terai, H.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Thoma, A.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Tiziani, H. J.

Toft, I.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Torga, J. R.

S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
[Crossref]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Unsleber, S.

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Urbanczyk, W.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Ustinov, V. M.

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

van Exter, M. P.

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Verma, V.

Vuckovic, J.

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

Waks, E.

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

Warburton, R. J.

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

Wegscheider, W.

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

Wei, S. H.

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

Williams, D. A.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Windecker, R.

Wohlfeil, B.

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

Wójcik, G.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Xu, X.

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Yamamoto, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Yamashita, T.

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

Zhao, H. Q.

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Zinoni, C.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

Zolnacz, K.

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

Zschiedrich, L.

P.-I. Schneider, N. Srocka, S. Rodt, L. Zschiedrich, S. Reitzenstein, and S. Burger, “Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber,” Opt. Express 26(7), 8479–8492 (2018).
[Crossref]

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

Zwiller, V.

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

AIP Adv. (1)

N. Srocka, A. Musiał, P.-I. Schneider, P. Mrowiński, P. Holewa, S. Burger, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Enhanced photon-extraction efficiency from InGaAs/GaAs quantum dots in deterministic photonic structures at 1.3 µm fabricated by in-situ electron-beam lithography,” AIP Adv. 8(8), 085205 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (2)

H. Kumano, T. Harada, I. Suemune, H. Nakajima, T. Kuroda, T. Mano, K. Sakoda, S. Odashima, and H. Sasakura, “Stable and efficient collection of single photons emitted from a semiconductor quantum dot into a single-mode optical fiber,” Appl. Phys. Express 9(3), 032801 (2016).
[Crossref]

H. Sasakura, X. Liu, S. Odashima, H. Kumano, S. Muto, and I. Suemune, “Fiber-based bidirectional solid-state single-photon emitter based on semiconductor quantum dot,” Appl. Phys. Express 6(6), 065203 (2013).
[Crossref]

Appl. Phys. Lett. (6)

D. Cadeddu, J. Teissier, F. R. Braakman, N. Gregersen, P. Stepanov, J. M. Gérard, J. Claudon, R. J. Warburton, M. Poggio, and M. Munsch, “A fiber-coupled quantum-dot on a photonic tip,” Appl. Phys. Lett. 108(1), 011112 (2016).
[Crossref]

M. Davanco, M. T. Rakher, W. Wegscheider, D. Schuh, A. Badolato, and K. Srinivasan, “Efficient quantum dot single photon extraction into an optical fiber using a nanophotonic directional coupler,” Appl. Phys. Lett. 99(12), 121101 (2011).
[Crossref]

B. Ma, Z. S. Chen, S. H. Wei, X. J. Shang, H. Q. Ni, and Z. C. Niu, “Single photon extraction from self-assembled quantum dots via stable fiber array coupling,” Appl. Phys. Lett. 110(14), 142104 (2017).
[Crossref]

G. Shambat, J. Provine, K. Rivoire, T. Sarmiento, J. Harris, and J. Vučković, “Optical fiber tips functionalized with semiconductor photonic crystal cavities,” Appl. Phys. Lett. 99(19), 191102 (2011).
[Crossref]

T. Miyazawa, K. Takemoto, Y. Nambu, S. Miki, T. Yamashita, H. Terai, M. Fujiwara, M. Sasaki, Y. Sakuma, M. Takatsu, T. Yamamoto, and Y. Arakawa, “Single-photon emission at 1.5 µm from an InAs/InP quantum dot with highly suppressed multi-photon emission probabilities,” Appl. Phys. Lett. 109(13), 132106 (2016).
[Crossref]

B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, and A. Fiore, “Growth and characterization of single quantum dots emitting at 1300 nm,” Appl. Phys. Lett. 86(10), 101908 (2005).
[Crossref]

J. Phys.: Conf. Ser. (1)

X. Xu, I. Toft, J. Mar, K. Hammura, R. T. Phillips, and D. A. Williams, “Single-photon sources with optical fibre integration,” J. Phys.: Conf. Ser. 61(1), 1271–1275 (2007).
[Crossref]

Nano Lett. (1)

M. Fujiwara, K. Toubaru, T. Noda, H. Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett. 11(10), 4362–4365 (2011).
[Crossref]

Nat. Commun. (2)

M. Gschrey, A. Thoma, P. Schnauber, M. Seifried, R. Schmidt, B. Wohlfeil, L. Krüger, J.-H. Schulze, T. Heindel, S. Burger, F. Schmidt, A. Strittmatter, S. Rodt, and S. Reitzenstein, “Highly indistinguishable photons from deterministic quantum-dot microlenses utilizing three-dimensional in situ electron-beam lithography,” Nat. Commun. 6(1), 7662 (2015).
[Crossref]

L. Sapienza, M. Davanço, A. Badolato, and K. Srinivasan, “Nanoscale optical positioning of single quantum dots for bright and pure single-photon emission,” Nat. Commun. 6(1), 7833 (2015).
[Crossref]

Opt. Express (2)

Optica (1)

Phys. Rev. Appl. (1)

H. Snijders, J. A. Frey, J. Norman, V. P. Post, A. C. Gossard, J. E. Bowers, M. P. van Exter, W. Löffler, and D. Bouwmeester, “Fiber-coupled cavity-QED source of identical single photons,” Phys. Rev. Appl. 9(3), 031002 (2018).
[Crossref]

Phys. Rev. B (1)

F. Guffarth, R. Heitz, A. Schliwa, O. Stier, N. N. Ledentsov, A. R. Kovsh, V. M. Ustinov, and D. Bimberg, “Strain engineering of self-organized InAs quantum dots,” Phys. Rev. B 64(8), 085305 (2001).
[Crossref]

Phys. Rev. Lett. (1)

X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, C.-Y. Lu, and J.-W. Pan, “On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar,” Phys. Rev. Lett. 116(2), 020401 (2016).
[Crossref]

Proc. SPIE (3)

K. Żołnacz, W. Urbańczyk, N. Srocka, T. Heuser, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, A. Musiał, P. Mrowiński, G. Sęk, K. Poturaj, G. Wójcik, P. Mergo, K. Dybka, M. Dyrkacz, and M. Dłubek, “Semiconductor quantum dot to fiber coupling system for 1.3 µm range,” Proc. SPIE 10674, 64 (2018).
[Crossref]

S. Burger, L. Zschiedrich, J. Pomplun, S. Herrmann, and F. Schmidt, “Hp-finite element method for simulating light scattering from complex 3D structures,” Proc. SPIE 9424, 94240Z (2015).
[Crossref]

P.-I. Schneider, X. Garcia Santiago, C. Rockstuhl, and S. Burger, “Global optimization of complex optical structures using Bayesian optimization based on Gaussian processes,” Proc. SPIE 10335, 103350O (2017).
[Crossref]

Procedia Mater. Sci. (1)

S. Cerrotta, E. N. Morel, and J. R. Torga, “Scanning optical coherence tomography applied to the characterization of surfaces and coatings,” Procedia Mater. Sci. 9, 142–149 (2015).
[Crossref]

Sci. Rep. (3)

A. Schlehahn, S. Fischbach, R. Schmidt, A. Kaganskiy, A. Strittmatter, S. Rodt, T. Heindel, and S. Reitzenstein, “A stand-alone fiber-coupled single-photon source,” Sci. Rep. 8(1), 1340 (2018).
[Crossref]

S. Chonan, S. Kato, and T. Aoki, “Efficient single-mode photon-coupling device utilizing a nanofiber tip,” Sci. Rep. 4(1), 4785 (2015).
[Crossref]

C. M. Lee, H. J. Lim, C. Schneider, S. Maier, S. Höfling, M. Kamp, and Y. H. Lee, “Efficient single photon source based on µ-fibre-coupled tunable microcavity,” Sci. Rep. 5(1), 14309 (2015).
[Crossref]

Theor. Comput. Sci. (1)

C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theor. Comput. Sci. 560, 7–11 (2014).
[Crossref]

Other (2)

Ch. M. Lee, M. A. Buyukkaya, S. Aghaeimeibodi, C. J. K. Richardson, and E. Waks, “A fiber-integrated single photon source emitting at telecom wavelengths,” arXiv:1902.05150 (2019).

P. Mrowiński, A. Musiał, K. Gawarecki, L. Dusanowski, T. Heuser, N. Srocka, D. Quandt, A. Strittmatter, S. Rodt, S. Reitzenstein, and G. Sęk, “Excitonic complexes in MOCVD-grown InGaAs/GaAs quantum dots emitting at telecom wavelengths,” arXiv:1811.01346 (2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1. Fiber-based system for PL measurements from the cryo-cooled QD directly glued to the HNA fiber end-face.
Fig. 2.
Fig. 2. Simulated von Mises stress and GeO2 concentration profile of the single step (a) and three step (b) HNA fiber. Refractive index profile measured in the core of the fabricated fiber preform; zero level corresponds to refractive index of the cladding (c). Comparison of far field intensity distributions measured at the distance of 5 mm from the fiber end-face for Corning SMF-28e fiber (blue trace) and the fabricated HNA SM fiber (red trace) (d).
Fig. 3.
Fig. 3. Cross-sectional scanning electron microscopy (SEM) images of the fabricated high aperture SM (a-b) and MM (c-d) fibers. Gray rings of different brightness visualize regions with different GeO2 concentrations.
Fig. 4.
Fig. 4. Low loss splice between the SMF-28e fiber (left) and HNA SM fiber (right) made using thermally expanded-core technique.
Fig. 5.
Fig. 5. SEM image of the QD-mesa (a). Optical microscope image of the mesa inside a square aperture – top view (b).
Fig. 6.
Fig. 6. Scheme of the mesa with embedded QD, and the HNA fiber (a). Calculated coupling efficiency as a function of fiber-mesa distance for the measured structure parameters with a maximum of 18.6% at a mesa-fiber distance of 200 nm (b). Calculated light intensity distribution, z = 0 corresponds to the position of the QD (c).
Fig. 7.
Fig. 7. Scheme of the interferometric set-up for positioning of the SM/MM HNA fiber terminated with a zirconia ferrule to the center of the mesa.
Fig. 8.
Fig. 8. Interference signals registered while scanning the sample with a mesa using SM fiber (rows 1-2) and MM fiber (row 3) for different positions of the scanning fiber: outside the aperture (a), over the aperture edge (b), over the aperture bottom (c), over the mesa edge (d), and over the mesa center (e). Row 1 shows scans for the mesa of diameter D = 2 µm with clearly visible fringes phase shift. Row 2 shows scans for the mesa of D = 0.5 µm with greater decrease in fringes contrast. Row 3 shows scans conducted for the mesa of D = 0.5 µm using MM fiber, which shows similar behavior as for SM scanning fiber. The distance d between the fiber end-face and the sample was determined only for the fiber placed over the flat areas.
Fig. 9.
Fig. 9. Interference signals averaged in a limited spectral window depicting topography of the scanned apertures with mesas obtained for the scanning SM fiber and mesas of diameter D = 2 µm (a) and D = 0.5 µm (b) and for the scanning MM fiber and mesa of D = 0.5 µm (c).
Fig. 10.
Fig. 10. Optical microscope images of the apertures with mesas of diameter D = 2 µm (a) and D = 0.5 µm (c). 2-D maps of the same structures obtained by collecting the feedback interference signal with the SM HNA scanning fiber (b, d). A zirconia ferrule with the HNA fiber glued to the semiconductor structure with QD (e).
Fig. 11.
Fig. 11. SEM image of the fiber end-face etched by 350 nm (a). Brighter spot indicates location of the GeO2 doped core. Back reflected spectral interference signal measured at room temperature and at 77 K for four consecutive cooling cycles with the etched fiber glued in a physical contact to a BK7 glass plate (b). Black dotted and dashed lines correspond respectively to ± 50 nm change in the distance between the fiber core and the top mesa surface.
Fig. 12.
Fig. 12. Side and top views of 2-D mesa topography acquired using the developed interference method (a,c) and the PL emission map collected at room temperature using the same HNA SM fiber (b,d). The size of the scanned square is 5×5 µm. The “mass centers” of the interference and PL emission maps are marked by white lines in (c,d).
Fig. 13.
Fig. 13. The PL spectrum of the single InGaAs/GaAs QD glued to the HNA SM fiber registered at 40 K with a single QD lines visible in the range of 1255-1265 nm (a). Normalized QD emission intensity for ten consecutive cooling cycles (b).
Fig. 14.
Fig. 14. The PL spectrum of the single InGaAs/GaAs QD glued to the HNA SM fiber operated at 40 K (a) for which the autocorrelation measurements were conducted with the bandwidth of the spectral filter marked with vertical dashed lines (b). The fit (red) to the experimental data (blue) yields value of the second order correlation function at zero time-delay equal to g(2)(0) = $0.035_{ - 0.035}^{ + 0.073}$ after background subtraction (raw value: g­(2)(0) = 0.32).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g f i t ( 2 ) ( τ ) = g b g + g ( 2 ) ( 0 ) e | τ | / τ d + H n 0 e | τ ± n T | / τ d ,