Abstract

When employing the light field method with standard lens array and the holographic functional screen (HFS) to realize the tabletop three-dimensional (3D) display, the viewing area of the reconstructed 3D images is right above the screen. As the observers sit around the table, the generated viewpoints in the middle of the viewing area are wasteful. Here, a 360-degree viewable light-field display system is demonstrated, which can present 3D images to multiple viewers in ring-shaped viewing range. The proposed display system consists of the HFS, the aspheric conical lens array, a 27-inch LCD with the resolution of 3840×2160, the LEDs array and the Fresnel lens array. By designing the aspheric conical lens, the light rays emitting from the elemental images forms the viewpoints in a ring-type arrangement. And the corresponding coding method is given. Compared with the light field display with standard lens array, the viewpoint density is increased and the aliasing phenomenon is reduced. In the experiment, the tabletop light-field display based on aspheric conical lens array can present high quality 360-degree viewable 3D image with the right perception and occlusion.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
162-inch 3D light field display based on aspheric lens array and holographic functional screen

Shenwu Yang, Xinzhu Sang, Xunbo Yu, Xin Gao, Li Liu, Boyang Liu, and Le Yang
Opt. Express 26(25) 33013-33021 (2018)

A 360-degree floating 3D display based on light field regeneration

Xinxing Xia, Xu Liu, Haifeng Li, Zhenrong Zheng, Han Wang, Yifan Peng, and Weidong Shen
Opt. Express 21(9) 11237-11247 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref]
  2. E.-Y. Chang, J. Choi, S. Lee, S. Kwon, J. Yoo, M. Park, and J. Kim, “360-degree color hologram generation for real 3D objects,” Appl. Opt. 57(1), A91–A100 (2018).
    [Crossref]
  3. Y. Lim, K. Hong, H. Kim, H.-E. Kim, E.-Y. Chang, S. Lee, T. Kim, J. Nam, H.-G. Choo, J. Kim, and J. Hahn, “360-degree tabletop electronic holographic display,” Opt. Express 24(22), 24999–25009 (2016).
    [Crossref]
  4. Y. Sando, D. Barada, and T. Yatagal, “Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone,” Appl. Opt. 55(30), 8589–8595 (2016).
    [Crossref]
  5. G. E. Favalore, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
    [Crossref]
  6. T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
    [Crossref]
  7. A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.
  8. S. Yoshida, “fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector,” Opt. Express 24(12), 13194–13203 (2016).
    [Crossref]
  9. Y. Takaki and J. Nakamura, “Generation of 360-degree color three dimensional images using a small array of high speed projectors to provide multiple vertical viewpoints,” Opt. Express 22(7), 8779–8789 (2014).
    [Crossref]
  10. Y. Takaki and S. Uchida, “Table screen 360-degree three-dimensional display using a small array of high-speed projectors,” Opt. Express 20(8), 8848–8861 (2012).
    [Crossref]
  11. X. Xia, X. Liu, H. Li, Z. Zheng, H. Wang, Y. Peng, and W. Shen, “A 360-degree floating 3D display based on light field regeneration,” Opt. Express 21(9), 11237–11247 (2013).
    [Crossref]
  12. L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
    [Crossref]
  13. M.-Y. He, H.-L. Zhang, H. Deng, X.-W. Li, D.-H. Li, and Q.-H. Wang, “Dual-view-zone tabletop 3D display system based on integral imaging,” Appl. Opt. 57(4), 952–958 (2018).
    [Crossref]
  14. X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
    [Crossref]
  15. X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
    [Crossref]
  16. K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
    [Crossref]
  17. R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
    [Crossref]
  18. G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution Graphical Models,” Graph. Models 97, 64–79 (2018).
    [Crossref]
  19. X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
    [Crossref]
  20. C. Yu, J. Yuan, F. Fan, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
    [Crossref]
  21. S. Yang, X. Sang, X. Yu, X. Gao, and B. Yan, “Analysis of the depth of field for integral imaging with consideration of facet braiding,” Appl. Opt. 57(7), 1534–1540 (2018).
    [Crossref]

2019 (1)

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

2018 (6)

2017 (1)

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

2016 (4)

2014 (2)

Y. Takaki and J. Nakamura, “Generation of 360-degree color three dimensional images using a small array of high speed projectors to provide multiple vertical viewpoints,” Opt. Express 22(7), 8779–8789 (2014).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

2013 (2)

2012 (1)

2010 (2)

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

C. Yu, J. Yuan, F. Fan, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
[Crossref]

2005 (1)

G. E. Favalore, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

Barada, D.

Bolas, M.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Chang, E.-Y.

Chen, D.

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Choi, J.

Choi, S.

Choo, H.-G.

Dai, S.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Debevec, P.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Deng, H.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

M.-Y. He, H.-L. Zhang, H. Deng, X.-W. Li, D.-H. Li, and Q.-H. Wang, “Dual-view-zone tabletop 3D display system based on integral imaging,” Appl. Opt. 57(4), 952–958 (2018).
[Crossref]

Dou, W.

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Evangelidis, K.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Fan, F.

Favalore, G. E.

G. E. Favalore, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

Fujii, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

Gao, X.

S. Yang, X. Sang, X. Yu, X. Gao, and B. Yan, “Analysis of the depth of field for integral imaging with consideration of facet braiding,” Appl. Opt. 57(7), 1534–1540 (2018).
[Crossref]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref]

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref]

Hahn, J.

Han, J.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution Graphical Models,” Graph. Models 97, 64–79 (2018).
[Crossref]

He, M.-Y.

Hilas, C.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Hong, K.

Jones, A.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Kang, G.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution Graphical Models,” Graph. Models 97, 64–79 (2018).
[Crossref]

Kim, H.

Kim, H.-E.

Kim, J.

Kim, T.

Kwon, S.

Lee, S.

Li, D.-H.

Li, H.

Li, S.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

Li, X.-W.

Li, Y.

Lim, Y.

Lin, C.

Liu, X.

Lu, K.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Luo, L.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

Mastorokostas, P.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

McDowall, I.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Nakamura, J.

Nam, J.

Pan, W.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Papadopoulos, T.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Papatheodorou, K.

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Park, M.

Peng, Y.

Ren, H.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

Sando, Y.

Sang, X.

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref]

S. Yang, X. Sang, X. Yu, X. Gao, and B. Yan, “Analysis of the depth of field for integral imaging with consideration of facet braiding,” Appl. Opt. 57(7), 1534–1540 (2018).
[Crossref]

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

C. Yu, J. Yuan, F. Fan, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
[Crossref]

Shen, W.

Sim, Y.

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution Graphical Models,” Graph. Models 97, 64–79 (2018).
[Crossref]

Takaki, Y.

Tanimoto, M.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

Tehrani, M. P.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

Uchida, S.

Wang, H.

Wang, P.

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Wang, Q.-H.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

M.-Y. He, H.-L. Zhang, H. Deng, X.-W. Li, D.-H. Li, and Q.-H. Wang, “Dual-view-zone tabletop 3D display system based on integral imaging,” Appl. Opt. 57(4), 952–958 (2018).
[Crossref]

Wu, Y.

Xia, X.

Xin, Y.

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

Xing, S.

Xu, D.

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

C. Yu, J. Yuan, F. Fan, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
[Crossref]

Yamada, H.

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Yan, B.

S. Yang, X. Sang, X. Yu, X. Gao, and B. Yan, “Analysis of the depth of field for integral imaging with consideration of facet braiding,” Appl. Opt. 57(7), 1534–1540 (2018).
[Crossref]

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Yang, S.

Yatagal, T.

Yendo, T.

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

Yoo, J.

Yoshida, S.

Yu, C.

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

C. Yu, J. Yuan, F. Fan, S. Choi, X. Sang, C. Lin, and D. Xu, “The modulation function and realizing method of holographic functional screen,” Opt. Express 18(26), 27820–27826 (2010).
[Crossref]

Yu, X.

S. Yang, X. Sang, X. Yu, X. Gao, and B. Yan, “Analysis of the depth of field for integral imaging with consideration of facet braiding,” Appl. Opt. 57(7), 1534–1540 (2018).
[Crossref]

X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26(7), 8883–8889 (2018).
[Crossref]

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Yuan, J.

Zhai, R.

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Zhang, H.-L.

Zhang, W.

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

Zhao, T.

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

Zheng, Z.

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (2)

X. Yu, X. Sang, D. Chen, P. Wang, X. Gao, T. Zhao, B. Yan, C. Yu, D. Xu, and W. Dou, “Autostereoscopic three-dimensional display with high dense views and the narrow structure pitch,” Chin. Opt. Lett. 12(6), 60008–60011 (2014).
[Crossref]

X. Gao, X. Sang, X. Yu, W. Zhang, B. Yan, and C. Yu, “360° light field 3D display system based on a triplet lensesarray and holographic functional screen,” Chin. Opt. Lett. 15(12), 60008 (2017).
[Crossref]

Comput. Geosci. (1)

K. Evangelidis, T. Papadopoulos, K. Papatheodorou, P. Mastorokostas, and C. Hilas, “3D geospatial visualizations: Animation and motion effects on spatial objects,” Comput. Geosci. 111, 200–212 (2018).
[Crossref]

Computer (1)

G. E. Favalore, “Volumetric 3D displays and application infrastructure,” Computer 38(8), 37–44 (2005).
[Crossref]

Graph. Models (1)

G. Kang, Y. Sim, and J. Han, “Terrain rendering with unlimited detail and resolution Graphical Models,” Graph. Models 97, 64–79 (2018).
[Crossref]

J. Vis. Comun. Image Res. (1)

T. Yendo, T. Fujii, M. Tanimoto, and M. P. Tehrani, “The Seelinder: Cylindrical 3D display viewable from 360 degrees,” J. Vis. Comun. Image Res. 21(5–6), 586–594 (2010).
[Crossref]

Neurocomputing (1)

R. Zhai, K. Lu, W. Pan, and S. Dai, “GPU-based real-time terrain rendering: Design and implementation,” Neurocomputing 171, 1–8 (2016).
[Crossref]

Opt. Commun. (1)

L. Luo, Q.-H. Wang, Y. Xin, H. Deng, H. Ren, and S. Li, “360-degree viewable tabletop 3D display system based on integral imaging by using perspective-oriented layer,” Opt. Commun. 438, 54–60 (2019).
[Crossref]

Opt. Express (7)

Other (1)

A. Jones, I. McDowall, H. Yamada, M. Bolas, and P. Debevec, “An interactive 360° light field display,” in Proceedings of ACM SIGGRAPH 2007 Emerging Technologies (2007), pp. 13.

Supplementary Material (4)

NameDescription
» Visualization 1       Different perspectives of the static tabletop light field 3D display
» Visualization 2       Different perspectives along the radius direction of the static tabletop light field 3D display
» Visualization 3       Different perspectives along the circular direction of the 3D electronic map
» Visualization 4       Dynamic tabletop 3D display

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Configuration of the light-field display with the standard lens array. (b) Light controlling process of the standard lens. (c) Configuration of the proposed light-field display with the conical lens array. (d) Light controlling process of the conical lens.
Fig. 2.
Fig. 2. (a) The designed structure parameters of the aspheric conical lens. (b) Comparison of modulation transfer function for the aspheric conical lens and the general single lens.
Fig. 3.
Fig. 3. Coding process of the elemental image.
Fig. 4.
Fig. 4. Top view of the mapping process of the pixels of the elemental images. (a) Pixels displayed on the LCD. (b) Pixels imaged on the HFS. (c) Center lines of the light rays with some width.
Fig. 5.
Fig. 5. (a) Elemental images of the previous light field display. (b) Elemental images of the proposed tabletop 3D light-field display.
Fig. 6.
Fig. 6. Simulation of SSIM for different perspectives of a tabletop 3D scene. (a) Perspectives captured from different angles. (b) Depth maps of different perspectives. (c) Simulation results of the light field display with the general lens array. (d) SSIM of the light field display with the general lens array. (e) Simulation results of the light field display with the aspheric conical lens array. (f) SSIM of the light field display with the aspheric conical lens array.
Fig. 7.
Fig. 7. Comparison of the displayed 3D image of (a) the light field display with the general lens array (b) the light field display with the aspheric conical lens array.
Fig. 8.
Fig. 8. Different perspectives along the circular direction of the static tabletop light field 3D display (see Visualization 1).
Fig. 9.
Fig. 9. Different perspectives along the radius direction of the static tabletop light field 3D display (see Visualization 2). (a) Perspectives from left to right. (b) Perspectives from front to back.
Fig. 10.
Fig. 10. Different perspectives along the circular direction of the 3D electronic map (see Visualization 3).
Fig. 11.
Fig. 11. Dynamic tabletop 3D display (see Visualization 4).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

z = c ( r + r 0 ) 2 1 + 1 ( 1 + k ) c 2 ( r + r 0 ) 2 + α 2 ( r + r 0 ) 2 + α 4 ( r + r 0 ) 4 + α 6 ( r + r 0 ) 6 + ( r > 0 )
θ = arcsin [ ( i % N N / 2 ) / r ]
r = [ N / 2 i % N ] 2 + [ N / 2 j % N ] 2 P 0
r = φ φ i n n e r φ o u t e r φ i n n e r N P 0
θ = θ + 18 0
x = i P 0 ( i % N N / 2 ) / r L tan φ
y = j P 0 ( j % N N / 2 ) / r L tan φ
θ = arcsin [ ( i % N N / 2 ) / r ] 18 0
φ = r ( φ o u t e r φ i n n e r ) N P 0 φ i n n e r