Abstract

Modal inspection of optical fibers is important for multimode application but it is challenging to collect in-situ information of propagating modes for evaluation and manipulation. Here we demonstrate direct observation of multimode interference in Er3+/Yb3+ co-doped micro/nanofibers. Luminescent interference patterns are visualized by visible up-conversion of Er3+ ions and are used for establishing the existence of higher order modes co-propagating with fundamental modes. We use fast Fourier transform to analyze the patterns in detail and obtain excellent agreement between experiment and calculation on beat lengths of the interference. Effective index differences among higher order modes and a fundamental mode of a microfiber are also experimentally investigated with the assistance of interference patterns, revealing the characteristic of modal dispersions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modal interference in optical nanofibers for sub-Angstrom radius sensitivity

Fredrik K. Fatemi, Jonathan E. Hoffman, Pablo Solano, Eliot F. Fenton, Guy Beadie, Steven L. Rolston, and Luis A. Orozco
Optica 4(1) 157-162 (2017)

Direct imaging of multimode interference in a channel waveguide

A. L. Campillo, J. W. P. Hsu, K. R. Parameswaran, and M. M. Fejer
Opt. Lett. 28(6) 399-401 (2003)

Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics

J.V. García-Santizo, P. Molina, M.O. Ramírez, K. Lemanski, W. Stręk, P.J. Dereń, and L.E Bausá
Opt. Express 18(17) 18269-18277 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
    [Crossref]
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives [Invited],” J. Opt. Soc. Am. B 27(11), B63–B92 (2010).
    [Crossref]
  3. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
    [Crossref]
  4. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
    [Crossref]
  5. L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
    [Crossref]
  6. S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
    [Crossref]
  7. T. Li, Optical Fiber Communications: Fiber Fabrication (Elsevier Science & Technology, 1985).
  8. L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
    [Crossref]
  9. X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5-6), 407–428 (2013).
    [Crossref]
  10. X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
    [Crossref]
  11. W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
    [Crossref]
  12. W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
    [Crossref]
  13. M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
    [Crossref]
  14. S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21(15), 18325–18335 (2013).
    [Crossref]
  15. F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask,” Opt. Lett. 19(7), 433–435 (1994).
    [Crossref]
  16. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
    [Crossref]
  17. A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
    [Crossref]
  18. A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
    [Crossref]
  19. Y. P. Huang, F. Shi, T. Wang, X. M. Liu, X. L. Zeng, F. F. Pang, T. Y. Wang, and P. Zhou, “High-order mode Yb-doped fiber lasers based on mode-selective couplers,” Opt. Express 26(15), 19171–19181 (2018).
    [Crossref]
  20. Y. M. Zhang, H. X. Li, C. S. Dai, L. X. Xu, C. Gu, W. Chen, Y. G. Zhu, P. J. Yao, and Q. W. Zhan, “All-fiber high-order mode laser using a metal-clad transverse mode filter,” Opt. Express 26(23), 29679–29686 (2018).
    [Crossref]
  21. S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
    [Crossref]
  22. J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
    [Crossref]
  23. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
    [Crossref]
  24. M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
    [Crossref]
  25. J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolstion, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2(5), 416–423 (2015).
    [Crossref]
  26. G. P. Agrawal, Fiber-optic Communication Systems (Wiley, 2010), Chap. 2.
    [Crossref]
  27. J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
    [Crossref]
  28. K. Z. Zheng, D. Zhao, D. S. Zhang, N. Liu, and W. P. Qin, “Ultraviolet upconversion fluorescence of Er3+ induced by 1560 nm laser excitation,” Opt. Lett. 35(14), 2442–2444 (2010).
    [Crossref]
  29. G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
    [Crossref]
  30. C. D. Poole, J. M. Wiesenfeld, and A. R. McCormick, “Broadband dispersion compensation by using the higher-order spatial mode in a two-mode fiber,” Opt. Lett. 17(14), 985–987 (1992).
    [Crossref]
  31. H. Nyquist, “Certain topics in telegraph transmission theory,” Proc. IEEE 90(2), 280–305 (2002).
    [Crossref]
  32. J. X. Yu, F. Liu, Z. Q. Gu, F. X. Gu, and S. L. Zhuang, “Efficient higher-order nonlinear optical effects in CdSe nanowaveguides,” Opt. Express 26(6), 6880–6889 (2018).
    [Crossref]

2018 (3)

2016 (3)

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

2015 (2)

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

J. E. Hoffman, F. K. Fatemi, G. Beadie, S. L. Rolstion, and L. A. Orozco, “Rayleigh scattering in an optical nanofiber as a probe of higher-order mode propagation,” Optica 2(5), 416–423 (2015).
[Crossref]

2014 (2)

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref]

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

2013 (3)

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21(15), 18325–18335 (2013).
[Crossref]

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5-6), 407–428 (2013).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

2012 (2)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

2011 (2)

M. Szczurowski, W. Urbanczyk, M. Napiorkowski, P. Hlubina, U. Hollenbach, H. Sieber, and J. Mohr, “Differential Rayleigh scattering method for measurement of polarization and intermodal beat length in optical waveguides and fibers,” Appl. Opt. 50(17), 2594–2600 (2011).
[Crossref]

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

2010 (3)

2008 (1)

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

2006 (2)

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

2004 (1)

2002 (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Proc. IEEE 90(2), 280–305 (2002).
[Crossref]

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

1994 (1)

1992 (1)

1987 (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

1972 (1)

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-optic Communication Systems (Wiley, 2010), Chap. 2.
[Crossref]

Ågren, H.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Beadie, G.

Chen, G. Y.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Chen, W.

Chormaic, S. N.

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Clarkson, W. A.

Cluzel, B.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Dai, C. S.

de Fornel, F.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Delamadeleine, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Denolle, B.

Dubois, F.

Emplit, P.

Fan, W.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Fatemi, F. K.

Foubert, K.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Frawley, M. C.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Gan, J. L.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Genevaux, P.

Gu, C.

Gu, F. X.

Gu, Z. Q.

Gusachenko, I.

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

Hadji, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

He, J. L.

Hlubina, P.

Hoffman, J. E.

Hollenbach, U.

Holzmann, D.

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

Hu, L. L.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

Huang, H. C.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

Huang, Y. P.

Hugon, O.

Hutchinson, M. R.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Jauncey, I. M.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Jeong, Y.

Jian, P.

Jiang, S.

Jiang, X. S.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Kachynski, A.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Kristensen, P.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Labroille, G.

Ladany, I.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
[Crossref]

Lalouat, L.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Li, H. X.

Li, T.

T. Li, Optical Fiber Communications: Fiber Fabrication (Elsevier Science & Technology, 1985).

Li, Y. H.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Liu, F.

Liu, N.

Liu, X. M.

Lou, J. Y.

Maimaiti, A.

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

Marciante, J. R.

McCormick, A. R.

Mears, R. J.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Mohr, J.

Monro, T. M.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Morizur, J.

Musolino, S.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Napiorkowski, M.

Nilsson, J.

Nyquist, H.

H. Nyquist, “Certain topics in telegraph transmission theory,” Proc. IEEE 90(2), 280–305 (2002).
[Crossref]

Ohulchanskyy, T. Y.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Orozco, L. A.

Pang, F. F.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Payne, D. N.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref]

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Petcu-Colan, A.

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Peyrade, D.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Picard, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

Poole, C. D.

Prasad, P. N.

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Qin, W. P.

Qiu, J. R.

Ramachandran, S.

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Ravets, S.

Reekie, L.

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

Richardson, D. J.

Ritsch, H.

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

Rolstion, S. L.

Rolston, S. L.

Sahu, J. K.

Salem, A.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Schartner, E. P.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Sergides, M.

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

Shen, Y. H.

Shi, F.

Sieber, H.

Sun, L.

Szczurowski, M.

Tong, L. M.

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5-6), 407–428 (2013).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

Treps, N.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

Truong, V. G.

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Tsiminis, G.

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Urbanczyk, W.

Vienne, G.

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Wang, J.

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

Wang, T.

Wang, T. Y.

Wei, X. M.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Wiesenfeld, J. M.

Wittke, J. P.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
[Crossref]

Wu, X. Q.

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5-6), 407–428 (2013).
[Crossref]

Xu, L. X.

Xu, S. H.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Yang, Q.

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Yang, Z. M.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Yao, P. J.

Ye, Z. Z.

Yocom, P. N.

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
[Crossref]

Yu, J. X.

Zeng, X. L.

Zhan, Q. W.

Zhang, D. S.

Zhang, J. J.

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Zhang, Y. M.

Zhang, Z. S.

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

W. Fan, J. L. Gan, Z. S. Zhang, X. M. Wei, S. H. Xu, and Z. M. Yang, “Narrow linewidth single frequency microfiber laser,” Opt. Lett. 37(20), 4323–4325 (2012).
[Crossref]

Zhao, D.

Zheng, K. Z.

Zhou, P.

Zhu, Y. G.

Zhuang, S. L.

ACS Nano (1)

G. Y. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense Visible and Near-Infrared Upconversion Photoluminescence in Colloidal LiYF4:Er3+ Nanocrystals under Excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[Crossref]

X. S. Jiang, Q. Yang, G. Vienne, Y. H. Li, L. M. Tong, J. J. Zhang, and L. L. Hu, “Demonstration of microfiber knot laser,” Appl. Phys. Lett. 89(14), 143513 (2006).
[Crossref]

Electron. Lett. (1)

R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54µm,” Electron. Lett. 23(19), 1026–1028 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 33(7), 1049–1056 (1997).
[Crossref]

J. Appl. Phys. (1)

J. P. Wittke, I. Ladany, and P. N. Yocom, “Y2O3 : Yb : Er-New Red-Emitting Infrared-Excited Phosphor,” J. Appl. Phys. 43(2), 595–600 (1972).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

W. Fan, Z. S. Zhang, J. L. Gan, X. M. Wei, H. C. Huang, S. H. Xu, and Z. M. Yang, “A wavelength tunable single frequency microfiber laser,” Laser Phys. Lett. 11(1), 015104 (2014).
[Crossref]

Nanophotonics (2)

X. Q. Wu and L. M. Tong, “Optical microfibers and nanofibers,” Nanophotonics 2(5-6), 407–428 (2013).
[Crossref]

S. Ramachandran and P. Kristensen, “Optical vortices in fiber,” Nanophotonics 2(5-6), 455–474 (2013).
[Crossref]

Opt. Commun. (1)

M. C. Frawley, A. Petcu-Colan, V. G. Truong, and S. N. Chormaic, “Higher order mode propagation in an optical nanofiber,” Opt. Commun. 285(23), 4648–4654 (2012).
[Crossref]

Opt. Express (9)

S. Ravets, J. E. Hoffman, L. A. Orozco, S. L. Rolston, G. Beadie, and F. K. Fatemi, “A low-loss photonic silica nanofiber for higher-order modes,” Opt. Express 21(15), 18325–18335 (2013).
[Crossref]

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref]

L. M. Tong, L. L. Hu, J. J. Zhang, J. R. Qiu, Q. Yang, J. Y. Lou, Y. H. Shen, J. L. He, and Z. Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[Crossref]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express 12(25), 6088–6092 (2004).
[Crossref]

L. Sun, S. Jiang, and J. R. Marciante, “All-fiber optical magnetic-field sensor based on Faraday rotation in highly terbium-doped fiber,” Opt. Express 18(6), 5407–5412 (2010).
[Crossref]

S. Musolino, E. P. Schartner, G. Tsiminis, A. Salem, T. M. Monro, and M. R. Hutchinson, “Portable optical fiber probe for in vivo brain temperature measurements,” Opt. Express 7(8), 3069–3077 (2016).
[Crossref]

Y. P. Huang, F. Shi, T. Wang, X. M. Liu, X. L. Zeng, F. F. Pang, T. Y. Wang, and P. Zhou, “High-order mode Yb-doped fiber lasers based on mode-selective couplers,” Opt. Express 26(15), 19171–19181 (2018).
[Crossref]

Y. M. Zhang, H. X. Li, C. S. Dai, L. X. Xu, C. Gu, W. Chen, Y. G. Zhu, P. J. Yao, and Q. W. Zhan, “All-fiber high-order mode laser using a metal-clad transverse mode filter,” Opt. Express 26(23), 29679–29686 (2018).
[Crossref]

J. X. Yu, F. Liu, Z. Q. Gu, F. X. Gu, and S. L. Zhuang, “Efficient higher-order nonlinear optical effects in CdSe nanowaveguides,” Opt. Express 26(6), 6880–6889 (2018).
[Crossref]

Opt. Lett. (4)

Optica (1)

Photonics Res. (1)

J. Wang, “Advances in communications using optical vortices,” Photonics Res. 4(5), B14–B28 (2016).
[Crossref]

Proc. IEEE (1)

H. Nyquist, “Certain topics in telegraph transmission theory,” Proc. IEEE 90(2), 280–305 (2002).
[Crossref]

Sci. Rep. (2)

A. Maimaiti, V. G. Truong, M. Sergides, I. Gusachenko, and S. N. Chormaic, “Higher order microfiber modes for dielectric particle trapping and propulsion,” Sci. Rep. 5(1), 9077 (2015).
[Crossref]

A. Maimaiti, D. Holzmann, V. G. Truong, H. Ritsch, and S. N. Chormaic, “Nonlinear force dependence on optically bound micro-particle arrays in the evanescent fields of fundamental and higher order microfibre modes,” Sci. Rep. 6(1), 30131 (2016).
[Crossref]

Other (2)

T. Li, Optical Fiber Communications: Fiber Fabrication (Elsevier Science & Technology, 1985).

G. P. Agrawal, Fiber-optic Communication Systems (Wiley, 2010), Chap. 2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. SEM image and up-conversion luminescence of Er3+ doped tellurite glass micro/nanofibers. (a) SEM image of a 780-nm-diameter nanofiber. (b) Photoluminescence spectrum of a doped microfiber covering a wide spectral range. Inset: visible up-conversion spectrum collected from the surface of the nanofiber in Fig. 1(a). (c) Periodic luminescent pattern on the nanofiber. The dashed lines indicate the fiber probe for excitation.
Fig. 2.
Fig. 2. Photoluminescence and spatial frequency information of the nanofiber with horizontally-polarized input. (a) Enlarged view of the middle area in Fig. 1(c). (b) Extracted luminescence intensity profile along the dashed line in Fig. 2(a). (c) Upper: 2D FFT spectral graph dependent on x position transformed from Fig. 2(a); Lower: 1D FFT spectrum along the dashed line in the upper part.
Fig. 3.
Fig. 3. Numerical simulation of the nanofiber. (a-c) Calculated transverse distributions of horizontal electric field for HE11-x, TM01 and TE01 modes, respectively, in a 780-nm-diameter nanofiber. The subscript “x” is used as a denotation of horizontal polarization. (d) Geometrical model of a nanofiber in Cartesian coordinates. (e) Simulated magnitude distribution of Poynting vectors on the xz plane across the fiber axis (denoted by the red dashed frame in Fig. 3(d)) when HE11-x and TM01 modes are launched simultaneously into the nanofiber.
Fig. 4.
Fig. 4. Vertical electric field components of TM01 mode (a) and TE01 mode (b) of the same fiber in Fig. 3(a).
Fig. 5.
Fig. 5. Multimode interference with vertically-polarized input. (a) Luminescence pattern on the nanofiber with TM-polarized excitation. The dashed lines indicate the position of launching fiber taper tip. (b) FFT spectrum of a 1D luminescent intensity profile extracted from Fig. 5(a). Inset: 2D FFT spectral graph dependent on x position. The gray dashed lines mark the edge positions along x of the nanofiber. (c) Cross-section view of a substrate-supported nanofiber model. (d) Simulated magnitude distribution of Poynting vectors on plane (i) as the HE11-y, the TE01 and the HE21 modes are launched simultaneously into a 780-nm-diameter nanofiber. (e) Summation of the Poynting vector magnitude distributions on plane (i), (ii) and (iii). The gray dashed lines in Figs. 5(d) and 5(e) mark the nanofiber edges.
Fig. 6.
Fig. 6. (a) Luminescence pattern on a 1.18-µm-diameter nanofiber under 1480-nm TE-polarized excitation. (b) Extracted spatial frequency profiles from Luminescence beat patterns produced by excitations at different wavelengths. (c) Calculated and measured mode index difference of HE11-x - TM01 and HE11-x - TE01 dependent on wavelength. The range of the error bar is about ± 0.019.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L = λ | n 1 n 2 | .