Abstract

It has long been assumed that off-axis holography is less spatial bandwidth efficient than on-axis holography. Six-pack holography (6PH) is the first off-axis configuration that changes this paradigm. We present the first experimental realization of 6PH, an off-axis interferometric system capable of spatially multiplexing six complex wavefronts while using the same number of camera pixels needed for a single off-axis hologram. Each of the six parallel complex wavefronts is encoded using a different fringe orientation and can be fully reconstructed. This technique is especially useful for dynamic samples, as it allows the acquisition of six complex wavefronts simultaneously. There are many applications for the data that can be compressed into the six channels. Here, we utilize 6PH to increase resolution in dynamic synthetic aperture imaging, where each of the six optically compressed off-axis holograms encodes a different spatial frequency range of the imaged sample, yielding 1.62 × resolution enhancement.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Six-pack off-axis holography

Moran Rubin, Gili Dardikman, Simcha K. Mirsky, Nir A. Turko, and Natan T. Shaked
Opt. Lett. 42(22) 4611-4614 (2017)

Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization

Gili Dardikman, Nir A. Turko, Noa Nativ, Simcha K. Mirsky, and Natan T. Shaked
Opt. Express 25(26) 33400-33415 (2017)

Multiplexed synthetic-aperture digital holography

Samuel T. Thurman and Andrew Bratcher
Appl. Opt. 54(3) 559-568 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
    [Crossref] [PubMed]
  2. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
    [Crossref] [PubMed]
  3. P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20(11), 111217 (2015).
    [PubMed]
  4. N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43(9), 1943–1946 (2018).
    [Crossref] [PubMed]
  5. W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. Chan, and J. Westerweel, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29(1), 101–103 (2004).
    [Crossref] [PubMed]
  6. Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43(11), 2587–2590 (2018).
    [Crossref] [PubMed]
  7. D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26(1), 428–437 (2018).
    [Crossref] [PubMed]
  8. L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
    [Crossref] [PubMed]
  9. Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27(1), 22–24 (2002).
    [Crossref] [PubMed]
  10. M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
    [Crossref] [PubMed]
  11. G. Dardikman, N. A. Turko, N. Nativ, S. K. Mirsky, and N. T. Shaked, “Optimal spatial bandwidth capacity in multiplexed off-axis holography for rapid quantitative phase reconstruction and visualization,” Opt. Express 25(26), 33400–33415 (2017).
    [Crossref] [PubMed]
  12. J. Picazo-Bueno and V. Mico, “Opposed-view spatially multiplexed interferometric microscopy,” J. Opt. 21(3), 035701 (2019).
    [Crossref]
  13. X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
    [Crossref]
  14. L. Huang, H. Mühlenbernd, Y. Wang, and T. Zentgraf, “Metasurface holography with multiple channels,” Progress in Electromagnetic Research Symposium (PIERS), Shanghai (2016).
    [Crossref]
  15. J. Á. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
    [Crossref] [PubMed]
  16. T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, and Y. Takaki, “Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts,” Opt. Express 25(10), 11157–11172 (2017).
    [Crossref] [PubMed]
  17. P. Zdańkowski, V. Mico, J. Picazo-Bueno, K. Patorski, and M. Trusiak, “Multi-beam spatially multiplexed interference microscopy for phase objects examination,” SPIE Optical Engineering and Applications, San Diego (2018).
  18. J. Á. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
    [Crossref] [PubMed]
  19. J. Á. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
    [Crossref] [PubMed]
  20. Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42(7), 1321–1324 (2017).
    [Crossref] [PubMed]
  21. X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
    [Crossref] [PubMed]
  22. Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26(10), 12620–12631 (2018).
    [Crossref] [PubMed]
  23. M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
    [Crossref] [PubMed]
  24. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [Crossref] [PubMed]
  25. T. Kreis, M. Adams, and W. Jueptner, “Aperture synthesis in digital holography,” International Symposium on Optical Science and Technology, Seattle, WA, United States (2002).
  26. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
    [Crossref] [PubMed]
  27. L. Granero, V. Micó, Z. Zalevsky, and J. García, “Synthetic aperture superresolved microscopy in digital lensless Fourier holography by time and angular multiplexing of the object information,” Appl. Opt. 49(5), 845–857 (2010).
    [Crossref] [PubMed]
  28. V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
    [Crossref]
  29. C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33(20), 2356–2358 (2008).
    [Crossref] [PubMed]
  30. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16(1), 161–169 (2008).
    [Crossref] [PubMed]
  31. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008).
    [Crossref] [PubMed]
  32. A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
    [Crossref] [PubMed]
  33. F. Charrière, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Appl. Opt. 45(29), 7667–7673 (2006).
    [Crossref] [PubMed]

2019 (1)

J. Picazo-Bueno and V. Mico, “Opposed-view spatially multiplexed interferometric microscopy,” J. Opt. 21(3), 035701 (2019).
[Crossref]

2018 (7)

J. Á. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref] [PubMed]

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43(9), 1943–1946 (2018).
[Crossref] [PubMed]

Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43(11), 2587–2590 (2018).
[Crossref] [PubMed]

D. Jin, R. Zhou, Z. Yaqoob, and P. T. C. So, “Dynamic spatial filtering using a digital micromirror device for high-speed optical diffraction tomography,” Opt. Express 26(1), 428–437 (2018).
[Crossref] [PubMed]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
[Crossref] [PubMed]

X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

Y. C. Lin, H. Y. Tu, X. R. Wu, X. J. Lai, and C. J. Cheng, “One-shot synthetic aperture digital holographic microscopy with non-coplanar angular-multiplexing and coherence gating,” Opt. Express 26(10), 12620–12631 (2018).
[Crossref] [PubMed]

2017 (6)

2016 (1)

J. Á. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
[Crossref] [PubMed]

2015 (1)

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20(11), 111217 (2015).
[PubMed]

2011 (1)

2010 (1)

2008 (4)

2007 (1)

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

2006 (2)

2004 (1)

2002 (2)

1999 (1)

1997 (1)

Adams, M.

T. Kreis, M. Adams, and W. Jueptner, “Aperture synthesis in digital holography,” International Symposium on Optical Science and Technology, Seattle, WA, United States (2002).

Arai, Y.

Barnea, I.

Bevilacqua, F.

Bhattacharya, N.

Braat, J. J. M.

Calabuig, A.

Centurion, M.

Chan, V. S.

Charrière, F.

Chen, H. C.

Cheng, C.

X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

Cheng, C. J.

Colomb, T.

Cuche, E.

Dardikman, G.

Depeursinge, C.

Eravuchira, P. J.

Ferraro, P.

Ferreira, C.

Finizio, A.

Frenklach, I.

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20(11), 111217 (2015).
[PubMed]

Garcia, J.

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
[Crossref] [PubMed]

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

García, J.

García-Martínez, P.

Girshovitz, P.

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20(11), 111217 (2015).
[PubMed]

Gotohda, T.

Granero, L.

Hong, J.

Javidi, B.

Jin, D.

Jueptner, W.

T. Kreis, M. Adams, and W. Jueptner, “Aperture synthesis in digital holography,” International Symposium on Optical Science and Technology, Seattle, WA, United States (2002).

Koek, W. D.

Kreis, T.

T. Kreis, M. Adams, and W. Jueptner, “Aperture synthesis in digital holography,” International Symposium on Optical Science and Technology, Seattle, WA, United States (2002).

Lai, X.

X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

Lai, X. J.

Lin, Y.

X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

Lin, Y. C.

Liu, C. Y.

Liu, H.

Liu, Z.

Marquet, P.

Martínez-León, L.

Massig, J. H.

Memmolo, P.

Miccio, L.

Mico, V.

J. Picazo-Bueno and V. Mico, “Opposed-view spatially multiplexed interferometric microscopy,” J. Opt. 21(3), 035701 (2019).
[Crossref]

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution with multiple off-axis holograms,” J. Opt. Soc. Am. A 23(12), 3162–3170 (2006).
[Crossref] [PubMed]

Micó, V.

Mirsky, S. K.

Montfort, F.

Nativ, N.

Nygate, Y. N.

Omae, K.

Otani, R.

Panotopoulos, G.

Patorski, K.

Paturzo, M.

Picazo-Bueno, J.

J. Picazo-Bueno and V. Mico, “Opposed-view spatially multiplexed interferometric microscopy,” J. Opt. 21(3), 035701 (2019).
[Crossref]

Picazo-Bueno, J. Á.

Psaltis, D.

Rubin, M.

Shaked, N. T.

Singh, G.

So, P. T. C.

Tahara, T.

Takaki, Y.

Trusiak, M.

Tu, H.

X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

Tu, H. Y.

Tulino, A.

Turko, N. A.

Westerweel, J.

Wolbromsky, L.

Wu, X. R.

Yamaguchi, I.

Yaqoob, Z.

Yuan, C.

Zalevsky, Z.

Zhai, H.

Zhang, T.

Zhou, R.

Appl. Opt. (2)

J. Biomed. Opt. (2)

J. Á. Picazo-Bueno, Z. Zalevsky, J. García, C. Ferreira, and V. Micó, “Spatially multiplexed interferometric microscopy with partially coherent illumination,” J. Biomed. Opt. 21(10), 106007 (2016).
[Crossref] [PubMed]

P. Girshovitz, I. Frenklach, and N. T. Shaked, “Broadband quantitative phase microscopy with extended field of view using off-axis interferometric multiplexing,” J. Biomed. Opt. 20(11), 111217 (2015).
[PubMed]

J. Opt. (2)

J. Picazo-Bueno and V. Mico, “Opposed-view spatially multiplexed interferometric microscopy,” J. Opt. 21(3), 035701 (2019).
[Crossref]

X. Lai, C. Cheng, Y. Lin, and H. Tu, “Angular-polarization multiplexing with spatial light modulators for resolution enhancement in digital holographic microscopy,” J. Opt. 19(5), 055607 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

V. Mico, Z. Zalevsky, and J. Garcia, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276(2), 209–217 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (16)

Y. N. Nygate, G. Singh, I. Barnea, and N. T. Shaked, “Simultaneous off-axis multiplexed holography and regular fluorescence microscopy of biological cells,” Opt. Lett. 43(11), 2587–2590 (2018).
[Crossref] [PubMed]

M. Rubin, G. Dardikman, S. K. Mirsky, N. A. Turko, and N. T. Shaked, “Six-pack off-axis holography,” Opt. Lett. 42(22), 4611–4614 (2017).
[Crossref] [PubMed]

J. Á. Picazo-Bueno, M. Trusiak, J. García, K. Patorski, and V. Micó, “Hilbert-Huang single-shot spatially multiplexed interferometric microscopy,” Opt. Lett. 43(5), 1007–1010 (2018).
[Crossref] [PubMed]

X. J. Lai, H. Y. Tu, Y. C. Lin, and C. J. Cheng, “Coded aperture structured illumination digital holographic microscopy for superresolution imaging,” Opt. Lett. 43(5), 1143–1146 (2018).
[Crossref] [PubMed]

N. A. Turko, P. J. Eravuchira, I. Barnea, and N. T. Shaked, “Simultaneous three-wavelength unwrapping using external digital holographic multiplexing module,” Opt. Lett. 43(9), 1943–1946 (2018).
[Crossref] [PubMed]

L. Wolbromsky, N. A. Turko, and N. T. Shaked, “Single-exposure full-field multi-depth imaging using low-coherence holographic multiplexing,” Opt. Lett. 43(9), 2046–2049 (2018).
[Crossref] [PubMed]

A. Calabuig, V. Micó, J. Garcia, Z. Zalevsky, and C. Ferreira, “Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing,” Opt. Lett. 36(6), 885–887 (2011).
[Crossref] [PubMed]

J. Á. Picazo-Bueno, Z. Zalevsky, J. García, and V. Micó, “Superresolved spatially multiplexed interferometric microscopy,” Opt. Lett. 42(5), 927–930 (2017).
[Crossref] [PubMed]

Y. C. Lin, H. C. Chen, H. Y. Tu, C. Y. Liu, and C. J. Cheng, “Optically driven full-angle sample rotation for tomographic imaging in digital holographic microscopy,” Opt. Lett. 42(7), 1321–1324 (2017).
[Crossref] [PubMed]

M. Paturzo, P. Memmolo, L. Miccio, A. Finizio, P. Ferraro, A. Tulino, and B. Javidi, “Numerical multiplexing and demultiplexing of digital holographic information for remote reconstruction in amplitude and phase,” Opt. Lett. 33(22), 2629–2631 (2008).
[Crossref] [PubMed]

C. Yuan, H. Zhai, and H. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Opt. Lett. 33(20), 2356–2358 (2008).
[Crossref] [PubMed]

I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22(16), 1268–1270 (1997).
[Crossref] [PubMed]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24(5), 291–293 (1999).
[Crossref] [PubMed]

Z. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Opt. Lett. 27(1), 22–24 (2002).
[Crossref] [PubMed]

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
[Crossref] [PubMed]

W. D. Koek, N. Bhattacharya, J. J. M. Braat, V. S. Chan, and J. Westerweel, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29(1), 101–103 (2004).
[Crossref] [PubMed]

Other (3)

L. Huang, H. Mühlenbernd, Y. Wang, and T. Zentgraf, “Metasurface holography with multiple channels,” Progress in Electromagnetic Research Symposium (PIERS), Shanghai (2016).
[Crossref]

P. Zdańkowski, V. Mico, J. Picazo-Bueno, K. Patorski, and M. Trusiak, “Multi-beam spatially multiplexed interference microscopy for phase objects examination,” SPIE Optical Engineering and Applications, San Diego (2018).

T. Kreis, M. Adams, and W. Jueptner, “Aperture synthesis in digital holography,” International Symposium on Optical Science and Technology, Seattle, WA, United States (2002).

Supplementary Material (3)

NameDescription
» Visualization 1       Visualization 1
» Visualization 2       Visualization 2
» Visualization 3       Visualization 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Comparison of on-axis holography, standard off-axis holography, and 6PH. These holograms were acquired with the experimental system presented next. CC, cross-correlation term; CC*, complex conjugate of corresponding CC term; DC, auto-correlation term. (a) Using on-axis holography, three N × N on-axis holograms are required to reconstruct a single N × N complex wavefront (on-axis: 3N2N2 = 18N2→6N2). (b) Using typical off-axis holography, a single 4N × 4N off-axis hologram is required to reconstruct a single N × N complex wavefront (off-axis: 16N2N2). (c) Using 6PH, a single 4N × 4N off-axis multiplexed hologram is required to reconstruct six N × N complex wavefronts (6PH: 16N2→6N2). The insets in (b) and (c) show the corresponding fringes magnified ten times.
Fig. 2
Fig. 2 Realization of 6PH using a modified Mach-Zehnder interferometer. (a) 6PH system for SA superresolution. LC, low-coherence supercontinuum laser source; DBS, diffractive beam shaper; L1 – L10, lenses; BS1, BS2, beam splitters; P1, P2, periscopes; PDP, phase delay plate; S, sample; MO, microscope objective; M1, M2, mirrors; ND, neutral density filter; C, camera. The red line displays the optical axis and not the six sample and six reference beam paths. (b) Illustration of beam paths in sample arm for two sample beams at opposing angles from the optical axis. The region marked ‘Periscope’ is the location of periscope P1 in (a). (c) Top: Diagram of the beams used as the reference and sample beams and their positions relative to the optical axis immediately before the phase delay plates. Each vertex in the image corresponds to one of the 77 beams produced by the DBS in both arms. Only the numbered beams (red circles) are not blocked. Bottom: The corresponding sample and reference PDP structures.
Fig. 3
Fig. 3 SA superresolution imaging based on 6PH. (a) Six-pack multiplexed hologram of a USAF target, experimentally acquired in a single camera exposure. Inset shows fringes magnified five times. (b) The corresponding spatial frequency power spectrum, after subtracting background image power spectrum. (c) Positioning of CC terms in the SA. CC numbering corresponds to matching sample beam from Fig. 2(c). (d) Same SA as in (c) after cropping to the largest possible circle, which makes the final image resolution isotropic. (e) Amplitude image produced from (d). (f) Profiles along the lines marked in e demonstrating the smallest resolvable elements.
Fig. 4
Fig. 4 Experimental results from 1PH, 4PH, and 6PH. (a) Standard off-axis hologram (1PH). (b) Two-pack hologram (2PH). (c) Four-pack hologram (4PH). From left to right column: hologram with inset showing fringes magnified five times, corresponding spatial frequency power spectrum, reconstructed amplitude image, and profiles at the locations marked on the amplitude image. For comparison, the 6PH results are shown in Fig. 3. For 2PH amplitude image: Left side shows elements from group 7. All other amplitude images show elements from groups 8 and 9.
Fig. 5
Fig. 5 Resolution limits in Figs. 3 and 4. For each group: first bar from the left is vertical resolution, second bar is horizontal resolution.
Fig. 6
Fig. 6 Red blood cells and microbeads amplitude and OPD maps. (a, b) Amplitude images of a sample containing multi-layers of red blood cells using 1PH (a) and 6PH (b). (c, d) OPD maps corresponding to (a) and (b). Red arrows indicate resolution enhancement: indentations at the centers of red blood cells are now more visible. The color bar to the left of (c) applies to (c) and (d). (e, f), OPD map of microbeads using 1PH (e) and 6PH (f). (g) Profiles of the bead in e and f indicated by the red arrows.