Abstract

In this work, we report a new superstructure grating design method for broad, non-equidistant discrete tuning in quantum cascade lasers using the Vernier effect. Our approach is applied to a wafer with gain centred at $\sim$7.8 $\mu$m. Measurements of a 3.75 mm long device are presented yielding 3.66% tuning around the central frequency and a peak optical power over 200 mW at 0 $^\circ$C heat sink temperature. In addition, we show that taking into account the optical dispersion of the material is crucial to fulfill narrow specifications. Our device is particularly well suited for multi absorption line spectroscopic measurements requiring high resolution and small form factor for high volume production.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Discrete mode tuning in terahertz quantum cascade lasers

Subhasish Chakraborty, Owen Marshall, Chen Wei Hsin, Md. Khairuzzaman, Harvey Beere, and David Ritchie
Opt. Express 20(26) B306-B314 (2012)

Discrete Vernier tuning in terahertz quantum cascade lasers using coupled cavities

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 22(13) 16595-16605 (2014)

Quasi-continuous frequency tunable terahertz quantum cascade lasers with coupled cavity and integrated photonic lattice

Iman Kundu, Paul Dean, Alexander Valavanis, Li Chen, Lianhe Li, John E. Cunningham, Edmund H. Linfield, and A. Giles Davies
Opt. Express 25(1) 486-496 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
    [Crossref]
  2. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
    [Crossref]
  3. R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
    [Crossref]
  4. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [Crossref]
  5. B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
    [Crossref]
  6. A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
    [Crossref]
  7. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
    [Crossref]
  8. S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
    [Crossref]
  9. Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
    [Crossref]
  10. V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
    [Crossref]
  11. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
    [Crossref]
  12. P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: Theory and applications, (Springer, 1987) pp. 7–15
  13. F. Peng and G. Cui, “Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm,” Appl. Therm. Eng. 78, 136–149 (2015).
    [Crossref]
  14. A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
    [Crossref]
  15. J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
    [Crossref]
  16. Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
    [Crossref]
  17. S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
    [Crossref]
  18. G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
    [Crossref]
  19. I. Kudman and E. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP,” Phys. Rev. 133(6A), A1665–A1667 (1964).
    [Crossref]
  20. L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
    [Crossref]

2015 (5)

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

F. Peng and G. Cui, “Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm,” Appl. Therm. Eng. 78, 136–149 (2015).
[Crossref]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

2012 (2)

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

2010 (2)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

2009 (1)

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

2005 (1)

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

2004 (1)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

2002 (1)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

1993 (1)

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

1987 (1)

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

1983 (1)

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref]

1964 (1)

I. Kudman and E. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP,” Phys. Rev. 133(6A), A1665–A1667 (1964).
[Crossref]

Aarts, E. H.

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: Theory and applications, (Springer, 1987) pp. 7–15

Aellen, T.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Bahk, J.-H.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Bai, Y.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Baillargeon, J. N.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Beck, M.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Belkin, M. A.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Bidaux, Y.

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Bischof, J. C.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Bismuto, A.

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

Blanchard, R.

Blaser, S.

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Bonetti, Y.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Cahill, D. G.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Capasso, F.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Cho, A. Y.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Chuang, Z.-M.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Coldren, L. A.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

Cui, G.

F. Peng and G. Cui, “Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm,” Appl. Therm. Eng. 78, 136–149 (2015).
[Crossref]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Dames, C.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Diehl, L.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J.-H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Duda, J.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Dupuis, R. D.

Faist, J.

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Felts, J.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Fischer, M.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Gelatt, C. D.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref]

Gini, E.

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

Giovannini, M.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

Goodson, K. E.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Gresch, T.

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Han, B.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Hofstetter, D.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Huang, Y.

Hugi, A.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Hvozdara, L.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

King, W. P.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Kirkpatrick, S.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref]

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Kudman, I.

I. Kudman and E. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP,” Phys. Rev. 133(6A), A1665–A1667 (1964).
[Crossref]

Lee, B. G.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Lee, J.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Loncar, M.

Lu, Q.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Lukes, J. R.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Mansuripur, T. S.

Marconnet, A.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Maulini, R.

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Menzel, S.

Muller, A.

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Nida, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Peng, F.

F. Peng and G. Cui, “Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm,” Appl. Therm. Eng. 78, 136–149 (2015).
[Crossref]

Pflugl, C.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Pflügl, C.

Pohl, R.

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Prasher, R. S.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Razeghi, M.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Reddy, P.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Rochat, M.

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

Ryou, J.-H.

Shakouri, A.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Shi, L.

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

Slack, G. A.

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Slivken, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Steigmeier, E.

I. Kudman and E. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP,” Phys. Rev. 133(6A), A1665–A1667 (1964).
[Crossref]

Tanzilli, R. A.

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Tardy, C.

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Terazzi, R.

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23(23), 29715–29722 (2015).
[Crossref]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Tsao, S.

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Van Laarhoven, P. J.

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: Theory and applications, (Springer, 1987) pp. 7–15

Vandersande, J.

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Vecchi, M. P.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref]

Wittmann, A.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Wolf, J.

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

Yarekha, D. A.

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Zhang, H. A.

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Appl. Phys. Lett. (5)

R. Maulini, M. Beck, J. Faist, and E. Gini, “Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers,” Appl. Phys. Lett. 84(10), 1659–1661 (2004).
[Crossref]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[Crossref]

S. Slivken, N. Bandyopadhyay, S. Tsao, S. Nida, Y. Bai, Q. Lu, and M. Razeghi, “Sampled grating, distributed feedback quantum cascade lasers with broad tunability and continuous operation at room temperature,” Appl. Phys. Lett. 100(26), 261112 (2012).
[Crossref]

Y. Bidaux, A. Bismuto, C. Tardy, R. Terazzi, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters,” Appl. Phys. Lett. 107(22), 221108 (2015).
[Crossref]

S. Blaser, D. A. Yarekha, L. Hvozdara, Y. Bonetti, A. Muller, M. Giovannini, and J. Faist, “Room-temperature, continuous-wave, single-mode quantum-cascade lasers at $\lambda \sim$λ∼ 5.4 $\mu$μm,” Appl. Phys. Lett. 86(4), 041109 (2005).
[Crossref]

Appl. Therm. Eng. (1)

F. Peng and G. Cui, “Efficient simultaneous synthesis for heat exchanger network with simulated annealing algorithm,” Appl. Therm. Eng. 78, 136–149 (2015).
[Crossref]

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1-3), 1–18 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Faist, D. Hofstetter, M. Beck, T. Aellen, M. Rochat, and S. Blaser, “Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation,” IEEE J. Quantum Electron. 38(6), 533–546 (2002).
[Crossref]

V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29(6), 1824–1834 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. G. Lee, H. A. Zhang, C. Pflugl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8$\mu$μm,” IEEE Photonics Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

J. Appl. Phys. (1)

Y. Bidaux, R. Terazzi, A. Bismuto, T. Gresch, S. Blaser, A. Muller, and J. Faist, “Measurements and simulations of the optical gain and anti-reflection coating modal reflectivity in quantum cascade lasers with multiple active region stacks,” J. Appl. Phys. 118(9), 093101 (2015).
[Crossref]

J. Phys. Chem. Solids (1)

G. A. Slack, R. A. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AIN,” J. Phys. Chem. Solids 48(7), 641–647 (1987).
[Crossref]

Nanoscale Microscale Thermophys. Eng. (1)

L. Shi, C. Dames, J. R. Lukes, P. Reddy, J. Duda, D. G. Cahill, J. Lee, A. Marconnet, K. E. Goodson, J.-H. Bahk, A. Shakouri, R. S. Prasher, J. Felts, W. P. King, B. Han, and J. C. Bischof, “Evaluating broader impacts of nanoscale thermal transport research,” Nanoscale Microscale Thermophys. Eng. 19(2), 127–165 (2015).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

I. Kudman and E. Steigmeier, “Thermal conductivity and Seebeck coefficient of InP,” Phys. Rev. 133(6A), A1665–A1667 (1964).
[Crossref]

Science (2)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264(5158), 553–556 (1994).
[Crossref]

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science 220(4598), 671–680 (1983).
[Crossref]

Semicond. Sci. Technol. (1)

A. Hugi, R. Maulini, and J. Faist, “External cavity quantum cascade laser,” Semicond. Sci. Technol. 25(8), 083001 (2010).
[Crossref]

Other (1)

P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated annealing: Theory and applications, (Springer, 1987) pp. 7–15

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Target frequencies (arrows), front mirror reflectivity (blue) and back mirror reflectivity (red) resulting from the simulated annealing process. No parasitic peaks are found beyond x-axis limits.
Fig. 2.
Fig. 2. Standard LIV measurements in CW operation at five different heat sink temperatures (T$_{HS}$). Light is collected from the front facet.
Fig. 3.
Fig. 3. (a): Cluster map of our measurements. Each cluster is labelled by $C_{i}$ and its associated target frequency is shown by the grey arrow. The scatter code colour corresponds to the different heat sink temperatures. Each point corresponds to a monomode spectrum. (b): Spectra with highest frequency of each cluster at 0 $^\circ$C heat sink temperature. Square dots are their respective suppression mode ratio (right axis).

Tables (3)

Tables Icon

Table 1. Clusters Shift at 0 $^\circ$ C heat sink temperature

Tables Icon

Table 2. Fitted Tuning Parameters of eq.(4)

Tables Icon

Table 3. Threshold currents, Slope efficiencies and Maximal output powers in each cluster.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

e j = { 1 if the cell  j  is etched  , 0 if the cell  j  is not etched  .
E [ r ( k ) ] = min s { 1 p } Re ( e i ϕ s r ( k s ) / A s ) .
Δ r j ( k s ) = d n 2 n ( e i 4 π n k s x j e i 4 π n k s x j + 1 ) .
k = k 0 { 1 β [ ( T H S + 273.15 ) γ + γ R t h ( P L + α i P i ) ] 1 γ } ,   i = F , B ,