Abstract

Continuous-variable quantum key distribution with a real local oscillator (LO) has been extensively studied recently due to its security and simplicity. Making it operate automatically and resistant to channel interference is the key to further long-term system operation. To overcome the dynamic changes in the state of polarization (SOP) of quantum signal caused by the random birefringence effect in fiber, Kalman filter is employed to estimate the polarization misalignment, thereby achieving polarization demultiplexing at the data level, and ultimately recovering the quantum signal with the help of a two-step phase compensation. The signal transmission and processing is simulated, which verifies the SOP tracking ability and the immunity to the fast phase drift. A proof-of-principle experiment is also conducted, and results show that it can resist the interference of SOP rotation at $1$ krad/s, and has the ability to distribute $8.4$ kbps secret key rate within $20$ km when only considering SOP tracking imperfection, confirming its feasibility under harsh channel conditions.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical frequency comb-based multichannel parallel continuous-variable quantum key distribution

Yijun Wang, Yiyu Mao, Wenti Huang, Duan Huang, and Ying Guo
Opt. Express 27(18) 25314-25329 (2019)

High key rate continuous-variable quantum key distribution with a real local oscillator

Tao Wang, Peng Huang, Yingming Zhou, Weiqi Liu, Hongxin Ma, Shiyu Wang, and Guihua Zeng
Opt. Express 26(3) 2794-2806 (2018)

Dual-phase-modulated plug-and-play measurement-device-independent continuous-variable quantum key distribution

Qin Liao, Yijun Wang, Duan Huang, and Ying Guo
Opt. Express 26(16) 19907-19920 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
    [Crossref]
  2. J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
    [Crossref]
  3. S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
    [Crossref]
  4. A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81(6), 062314 (2010).
    [Crossref]
  5. A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
    [Crossref]
  6. F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
    [Crossref]
  7. A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114(7), 070501 (2015).
    [Crossref]
  8. A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
    [Crossref]
  9. P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
    [Crossref]
  10. D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
    [Crossref]
  11. D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511 (2015).
    [Crossref]
  12. Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).
  13. F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
    [Crossref]
  14. D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695 (2015).
    [Crossref]
  15. D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
    [Crossref]
  16. B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
    [Crossref]
  17. X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
    [Crossref]
  18. P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
    [Crossref]
  19. P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” In Optical fiber communication conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper FI3.
  20. D. D. Li, S. Gao, G. C. Li, L. Xue, L. W. Wang, C. B. Lu, Y. Xiang, Z. Y. Zhao, L. C. Yan, Z. Y. Chen, G. Yu, and J. H. Liu, “Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback,” Opt. Express 26(18), 22793–22800 (2018).
    [Crossref]
  21. J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339 (2012).
    [Crossref]
  22. Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
    [Crossref]
  23. Y. Yang, G. Cao, K. Zhong, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Fast polarization-state tracking scheme based on radius-directed linear Kalman filter,” Opt. Express 23(15), 19673–19680 (2015).
    [Crossref]
  24. A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95(1), 012316 (2017).
    [Crossref]
  25. F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).
  26. S. Kleis, M. Rueckmann, and C. G. Schaeffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42(8), 1588 (2017).
    [Crossref]
  27. T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
    [Crossref]
  28. A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102(18), 180504 (2009).
    [Crossref]
  29. S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).
  30. T. Marshall, B. Szafraniec, and B. Nebendahl, “Kalman filter carrier and polarization-state tracking,” Opt. Lett. 35(13), 2203 (2010).
    [Crossref]
  31. I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
    [Crossref]
  32. B. Szafraniec, T. S. Marshall, and B. Nebendahl, “Performance monitoring and measurement techniques for coherent optical systems,” J. Lightwave Technol. 31(4), 648–663 (2013).
    [Crossref]
  33. T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
    [Crossref]
  34. H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
    [Crossref]
  35. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804 (2008).
    [Crossref]
  36. B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” Phys. Rev. Appl. 9(5), 054008 (2018).
    [Crossref]

2019 (1)

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

2018 (5)

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” Phys. Rev. Appl. 9(5), 054008 (2018).
[Crossref]

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

D. D. Li, S. Gao, G. C. Li, L. Xue, L. W. Wang, C. B. Lu, Y. Xiang, Z. Y. Zhao, L. C. Yan, Z. Y. Chen, G. Yu, and J. H. Liu, “Field implementation of long-distance quantum key distribution over aerial fiber with fast polarization feedback,” Opt. Express 26(18), 22793–22800 (2018).
[Crossref]

2017 (3)

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95(1), 012316 (2017).
[Crossref]

S. Kleis, M. Rueckmann, and C. G. Schaeffer, “Continuous variable quantum key distribution with a real local oscillator using simultaneous pilot signals,” Opt. Lett. 42(8), 1588 (2017).
[Crossref]

2016 (1)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref]

2015 (6)

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511 (2015).
[Crossref]

D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695 (2015).
[Crossref]

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Y. Yang, G. Cao, K. Zhong, X. Zhou, Y. Yao, A. P. T. Lau, and C. Lu, “Fast polarization-state tracking scheme based on radius-directed linear Kalman filter,” Opt. Express 23(15), 19673–19680 (2015).
[Crossref]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref]

2013 (4)

B. Szafraniec, T. S. Marshall, and B. Nebendahl, “Performance monitoring and measurement techniques for coherent optical systems,” J. Lightwave Technol. 31(4), 648–663 (2013).
[Crossref]

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

2012 (4)

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, M. Fujiwara, M. Sasaki, and A. J. Shields, “Stability of high bit rate quantum key distribution on installed fiber,” Opt. Express 20(15), 16339 (2012).
[Crossref]

H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
[Crossref]

2010 (3)

T. Marshall, B. Szafraniec, and B. Nebendahl, “Kalman filter carrier and polarization-state tracking,” Opt. Lett. 35(13), 2203 (2010).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81(6), 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

2009 (2)

I. Fatadin, D. Ives, and S. J. Savory, “Blind equalization and carrier phase recovery in a 16-QAM optical coherent system,” J. Lightwave Technol. 27(15), 3042–3049 (2009).
[Crossref]

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102(18), 180504 (2009).
[Crossref]

2008 (2)

S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804 (2008).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
[Crossref]

2007 (1)

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

Alléaume, R.

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95(1), 012316 (2017).
[Crossref]

Berta, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Bloch, M.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

Bobrek, M.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Braunstein, S. L.

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
[Crossref]

Brif, C.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Camacho, R. M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Cao, G.

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Chen, Z.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Chen, Z. Y.

Choi, I.

Coles, P. J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Diamanti, E.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).

Dixon, A. R.

Dynes, J. F.

Fang, J.

H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
[Crossref]

Fatadin, I.

Fossier, S.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

Franz, T.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Fujiwara, M.

Fung, C. H. F.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Furrer, F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Gao, S.

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

Ghorai, S.

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).

Grangier, P.

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81(6), 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102(18), 180504 (2009).
[Crossref]

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).

Grice, W.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Grosshans, F.

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

Guo, H.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

He, G.

H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
[Crossref]

Hentschel, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Huang, D.

Huang, P.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref]

D. Huang, D. K. Lin, P. Huang, and G. H. Zeng, “High-speed continuous-variable quantum key distribution without sending a local oscillator,” Opt. Lett. 40(16), 3695 (2015).
[Crossref]

Huang, Y.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Hübel, H.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Ives, D.

Jiang, M. S.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Jouguet, P.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Karinou, F.

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Kleis, S.

Kotten, K.

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” In Optical fiber communication conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper FI3.

Krummrich, P. M.

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” In Optical fiber communication conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper FI3.

Kunz-Jacques, S.

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Lau, A. P. T.

Laudenbach, F.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Leverrier, A.

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref]

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81(6), 062314 (2010).
[Crossref]

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102(18), 180504 (2009).
[Crossref]

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).

Li, D. D.

Li, G. C.

Li, M.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Li, Z.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Liang, L. M.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Lim, C. C. W.

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” Phys. Rev. Appl. 9(5), 054008 (2018).
[Crossref]

Lin, D.

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511 (2015).
[Crossref]

Lin, D. K.

Liu, J. H.

Liu, W.

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
[Crossref]

Lodewyck, J.

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

Lougovski, P.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Lu, C.

Lu, C. B.

Lütkenhaus, N.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Ma, H.

Ma, X. C.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Marie, A.

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95(1), 012316 (2017).
[Crossref]

Marshall, T.

Marshall, T. S.

Nebendahl, B.

Pacher, C.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Peev, M.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
[Crossref]

Pooser, R.

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Poppe, A.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Qi, B.

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” Phys. Rev. Appl. 9(5), 054008 (2018).
[Crossref]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Rueckmann, M.

Sarovar, M.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Sasaki, M.

Savory, S. J.

Schaeffer, C. G.

Scholz, V. B.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Schrenk, B.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Sharpe, A. W.

Shields, A. J.

Soh, D. B. S.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Sun, S. H.

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

Szafraniec, B.

Tomamichel, M.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Urayama, J.

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

Walther, P.

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

Wang, C.

Wang, L. W.

Wang, S.

Wang, T.

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

Wang, X.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Wang, Z.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Werner, R. F.

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

Xiang, Y.

Xu, B.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Xu, C.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Xue, L.

Yan, L. C.

Yang, Y.

Yao, Y.

Yu, G.

Yu, S.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Yuan, Z. L.

Zeng, G.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref]

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref]

D. Huang, D. Lin, C. Wang, W. Liu, and G. Zeng, “Continuous-variable quantum key distribution with 1 Mbps secure key rate,” Opt. Express 23(13), 17511 (2015).
[Crossref]

Zeng, G. H.

Zhang, H.

H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
[Crossref]

Zhang, X.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Zhang, Y.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Zhang, Y. C.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Zhao, Y.

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

Zhao, Z. Y.

Zhong, K.

Zhou, X.

Zhou, Y.

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang, and G. Zeng, “High key rate continuous-variable quantum key distribution with a real local oscillator,” Opt. Express 26(3), 2794–2806 (2018).
[Crossref]

Adv. Quantum Technol. (1)

F. Laudenbach, C. Pacher, C. H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P. Walther, and H. Hübel, “Continuous-Variable Quantum Key Distribution with Gaussian Modulation–The Theory of Practical Implementations,” Adv. Quantum Technol. 1(1), 1800011 (2018).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. B: At., Mol. Opt. Phys. (1)

Y. Zhao, Y. Zhang, Y. Huang, B. Xu, S. Yu, and H. Guo, “Polarization attack on continuous-variable quantum key distribution,” J. Phys. B: At., Mol. Opt. Phys. 52(1), 015501 (2019).
[Crossref]

Nat. Photonics (1)

P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photonics 7(5), 378–381 (2013).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. A (8)

X. C. Ma, S. H. Sun, M. S. Jiang, and L. M. Liang, “Local oscillator fluctuation opens a loophole for Eve in practical continuous-variable quantum-key-distribution systems,” Phys. Rev. A 88(2), 022339 (2013).
[Crossref]

P. Jouguet, S. Kunz-Jacques, and E. Diamanti, “Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution,” Phys. Rev. A 87(6), 062313 (2013).
[Crossref]

J. Lodewyck, M. Bloch, R. García-Patrón, and S. Fossier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76(4), 042305 (2007).
[Crossref]

A. Leverrier and P. Grangier, “Simple proof that Gaussian attacks are optimal among collective attacks against continuous-variable quantum key distribution with a Gaussian modulation,” Phys. Rev. A 81(6), 062314 (2010).
[Crossref]

A. Leverrier, F. Grosshans, and P. Grangier, “Finite-size analysis of a continuous-variable quantum key distribution,” Phys. Rev. A 81(6), 062343 (2010).
[Crossref]

A. Marie and R. Alléaume, “Self-coherent phase reference sharing for continuous-variable quantum key distribution,” Phys. Rev. A 95(1), 012316 (2017).
[Crossref]

T. Wang, P. Huang, Y. Zhou, W. Liu, and G. Zeng, “Pilot-multiplexed continuous-variable quantum key distribution with a real local oscillator,” Phys. Rev. A 97(1), 012310 (2018).
[Crossref]

H. Zhang, J. Fang, and G. He, “Improving the performance of the four-state continuous-variable quantum key distribution by using optical amplifiers,” Phys. Rev. A 86(2), 022338 (2012).
[Crossref]

Phys. Rev. Appl. (1)

B. Qi and C. C. W. Lim, “Noise analysis of simultaneous quantum key distribution and classical communication scheme using a true local oscillator,” Phys. Rev. Appl. 9(5), 054008 (2018).
[Crossref]

Phys. Rev. Lett. (5)

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102(18), 180504 (2009).
[Crossref]

F. Furrer, T. Franz, M. Berta, A. Leverrier, V. B. Scholz, M. Tomamichel, and R. F. Werner, “Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks,” Phys. Rev. Lett. 109(10), 100502 (2012).
[Crossref]

A. Leverrier, “Composable security proof for continuous-variable quantum key distribution with coherent states,” Phys. Rev. Lett. 114(7), 070501 (2015).
[Crossref]

A. Leverrier, “Security of continuous-variable quantum key distribution via a Gaussian de Finetti reduction,” Phys. Rev. Lett. 118(20), 200501 (2017).
[Crossref]

S. Pirandola, S. L. Braunstein, and S. Lloyd, “Characterization of Collective Gaussian Attacks and Security of Coherent-State Quantum Cryptography,” Phys. Rev. Lett. 101(20), 200504 (2008).
[Crossref]

Phys. Rev. X (2)

D. B. S. Soh, C. Brif, P. J. Coles, N. Lütkenhaus, R. M. Camacho, J. Urayama, and M. Sarovar, “Self-referenced continuous-variable quantum key distribution protocol,” Phys. Rev. X 5(4), 041010 (2015).
[Crossref]

B. Qi, P. Lougovski, R. Pooser, W. Grice, and M. Bobrek, “Generating the local oscillator, locally in continuous-variable quantum key distribution based on coherent detection,” Phys. Rev. X 5(4), 041009 (2015).
[Crossref]

Rev. Mod. Phys. (1)

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84(2), 621–669 (2012).
[Crossref]

Sci. Rep. (1)

D. Huang, P. Huang, D. Lin, and G. Zeng, “Long-distance continuous-variable quantum key distribution by controlling excess noise,” Sci. Rep. 6(1), 19201 (2016).
[Crossref]

Other (4)

P. M. Krummrich and K. Kotten, “Extremely fast (microsecond timescale) polarization changes in high speed long haul WDM transmission systems,” In Optical fiber communication conference, 2004 OSA Technical Digest Series (Optical Society of America, 2004), paper FI3.

Y. C. Zhang, Z. Li, Z. Chen, C. Weedbrook, Y. Zhao, X. Wang, C. Xu, X. Zhang, Z. Wang, M. Li, and X. Zhang, “Continuous-variable QKD over 50 km commercial fiber,” arXiv preprint arXiv:1709.04618 (2017).

F. Laudenbach, B. Schrenk, C. Pacher, M. Hentschel, C. H. F. Fung, F. Karinou, A. Poppe, M. Peev, and H. Hübel, “Pilot-assisted intradyne reception for high-speed continuous-variable quantum key distribution with true local oscillator,” arXiv preprint arXiv:1712.10242 (2017).

S. Ghorai, P. Grangier, E. Diamanti, and A. Leverrier, “Asymptotic security of the four-state continuous-variable quantum key distribution protocol,” arXiv preprint arXiv:1902.01317. (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) CV-QKD with simultaneous phase reference. BS: beam splitter; Mod: modulation; PBC: polarization beam collector; PBS: polarization beam splitter; BD: balanced detector. (b) Schematic diagram of radius-directed linear Kalman filter. $\boldsymbol{Z}(k)$: input; $\boldsymbol{U}(k)$: measurement prediction; $\boldsymbol{U}_{c}(k)$: constraint; $\Delta \boldsymbol{U}(k)$: residual; $\boldsymbol{S}(k)$: state vector; $\boldsymbol{S}^{-}(k)$: state vector prediction; $\boldsymbol{P}^{-}(k)$: priori estimate error covariance; $\boldsymbol{P}(k)$: posteriori estimate error covariance.
Fig. 2.
Fig. 2. (a) Constraints on the ideal circle. Enforcing the measurements onto the ideal circle. (b) Two-step phase compensation. The red dots represent the ideal symbols of quantum signal, the blue dot represents the ideal symbols of phase reference signal, and the purple dot represents the received symbols. $\theta _{ref}$ is for the first rotation, while $\theta _{s}$ is for the second rotation.
Fig. 3.
Fig. 3. Signal transmission and processing. The SNR of quantum signal is set as $-3$ dB, and the SNR of reference signal is $30$ dB. The shot noise and the electronic noise in two detectors are assumed to be equal here and has the proportion $10 \lg (v_{el} / N_{0}) = -20$ dB. The total loss $\eta T$ is set as $1$ for convenience. Other parameters are set as: $\Delta \omega =1$ MHz, $\Delta v = 10$ kHz, $\theta _{ch}=\frac {2}{3} \pi$, $w=1$ krad/s.
Fig. 4.
Fig. 4. (a) Fast convergence performance with constant SOP deviation. (b) Tracking ability with SOP rotation at 1krad/s. (c) Excess noise changes with polarization rotation angular frequency. The threshold of key generation within $20$ km is calculated according to [34] with typical parameters: $V_{A}=0.5$, $\eta =0.6$, $\beta =95\%$, $v_{el}=0.01$, $\alpha =0.2$ dB/km.
Fig. 5.
Fig. 5. (a) Excess noise under different frequency offset and laser linewidth. (b) Constellation distribution with initial [a,b,c,d]=[1,0,0,0]. (c) Constellation distribution with initial [a,b,c,d]=[0.5,0.5,0.5,0.5].
Fig. 6.
Fig. 6. Set-up of our experiment. CW laser: continuous-wave laser; AM: amplitude modulator; PM: phase modulator; BS: beamsplitter; DL: delay line; VOA: variable optical attenuator; PBC: polarizing beam collector; AWG: arbitrary waveform generator; SMF: single mode fiber; PSA: polarization state analyzer; MPC: manual polarization controller; PBS: polarizing beamsplitter; BD: balanced detector.
Fig. 7.
Fig. 7. (a) 6 hours polarization state test. (b) Excess noise $\varepsilon _{B1}$ with different SNR of received signal. (c) Excess noise $\varepsilon _{B2}$ and corresponding achievable key rate. the average $\bar {\varepsilon _{B1}}=0.0397$ is treated as Bob’s trusted noise, $\bar {\varepsilon _{B2}}=0.0095$ is considered as channel excess noise. Length of each frame is $10^{5}$, in which $10 \%$ of data is used for second phase compensation. The modulation variance $V_{A}$ is assumed as $0.5$. the reconciliation efficiency $\beta$ is assumed as $95 \%$. Other parameters are calibrated as: the quantum efficiency $\eta =0.58$, the electronic noise $v_{el}=0.18$, the attenuation of fiber spool is $3.82$ dB, the repetition rate is $50$ MHz.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Z ( t ) = η T e j ( Δ ω t + θ n ( t ) ) J ( t ) X ( t ) + ξ ( t ) ,
( Z H ( t ) Z V ( t ) ) = η T e j ( Δ ω t + θ n ( t ) ) ( J 11 ( t ) J 12 ( t ) J 21 ( t ) J 22 ( t ) ) ( s ( t ) e j ( θ 0 + θ m o d ( t ) + θ c h ) r e j θ 0 ) + ( s H ( t ) + e H ( t ) s V ( t ) + e V ( t ) ) ,
e j ( Δ ω t + θ n ( t ) ) X ( t ) + ξ ( t ) = ( η T J ( t ) ) 1 Z ( t ) = ( η T ) 1 ( a ( t ) + j b ( t ) c ( t ) + j d ( t ) c ( t ) + j d ( t ) a ( t ) j b ( t ) ) ( Z H ( t ) Z V ( t ) ) ,
H ( k ) = ( Z H ( k ) j Z H ( k ) Z V ( k ) j Z V ( k ) Z V ( k ) j Z V ( k ) Z H ( k ) j Z H ( k ) ) ,
S ( k ) = [ a ( k ) , b ( k ) , c ( k ) , d ( k ) ] T ,
U ( k ) = H ( k ) S ( k ) + v ( k ) ,
S ( k ) = S ( k 1 ) + w ( k ) ,
S ( k ) = S ( k 1 ) ,
P ( k ) = P ( k 1 ) + Q ,
K ( k ) = P ( k ) H T ( k ) ( H ( k ) P ( k ) H T ( k ) + R ) 1 ,
Δ U ( k ) = U c ( k ) U ( k ) = U c ( k ) H ( k ) S ( k ) ,
S ( k ) = S ( k ) + K ( k ) Δ U ( k ) ,
P ( k ) = P ( k ) K ( k ) H ( k ) P ( k ) ,
U c ( k ) = [ r H U H ( k ) | U H ( k ) | , r V U V ( k ) | U V ( k ) | ] T ,
U H 1 ( k ) = U H ( k ) ÷ U V ( k ) | U V ( k ) | ,
U H 2 ( k ) = U H 1 ( k ) e j θ s ,