Abstract

We undertake a computational and experimental study of an advanced class of structured beams, partially coherent radially polarized vortex (PCRPV) beams, on propagation through atmospheric turbulence. A computational propagation model is established to simulate this class of beams, and it is used to calculate the average intensity and on-axis scintillation index of PCRPV beams. On comparison with other classes of structured beams, such as partially coherent vortex beams and partially coherent radially polarized beams, it is found that the PCRPV beams, which structure phase, coherence and polarization simultaneously, show marked improvements in atmospheric propagation. The simulation results agree reasonably well with the experimental results. These beams will be useful in free-space optical communications and remote sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Propagation of vector vortex beams through a turbulent atmosphere

Wen Cheng, Joseph W. Haus, and Qiwen Zhan
Opt. Express 17(20) 17829-17836 (2009)

Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam

Lina Guo, Yahong Chen, Xianlong Liu, Lin Liu, and Yangjian Cai
Opt. Express 24(13) 13714-13728 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
    [Crossref]
  2. H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
    [Crossref]
  3. V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).
  4. V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).
  5. J. C. Leader, “Intensity fluctuations resulting from partially coherent light propagating through atmospheric turbulence,” J. Opt. Soc. Am. 69(1), 73–84 (1979).
    [Crossref]
  6. R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).
    [Crossref]
  7. S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73(6), 831–837 (1983).
    [Crossref]
  8. J. C. Ricklin and F. M. Davidson, “Atmospheric optical communication with a Gaussian Schell beam,” J. Opt. Soc. Am. A 20(5), 856–866 (2003).
    [Crossref]
  9. O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
    [Crossref]
  10. G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
    [Crossref]
  11. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).
    [Crossref]
  12. G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).
    [Crossref]
  13. J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).
    [Crossref] [PubMed]
  14. S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
    [Crossref]
  15. O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).
  16. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  17. G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(12), 5448–5456 (2004).
    [Crossref] [PubMed]
  18. J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).
    [Crossref]
  19. G. Gbur and R. K. Tyson, “Vortex beam propagation through atmospheric turbulence and topological charge conservation,” J. Opt. Soc. Am. A 25(1), 225–230 (2008).
    [Crossref]
  20. J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).
    [Crossref] [PubMed]
  21. J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).
    [Crossref] [PubMed]
  22. Y. Zhang, D. Ma, Z. Zhou, and X. Yuan, “Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere,” Appl. Opt. 56(10), 2922–2926 (2017).
    [Crossref] [PubMed]
  23. H. T. Eyyuboǧlu, “Scintillation behavior of vortex beams in strong turbulence region,” J. Mod. Opt. 63(21), 2374–2381 (2016).
    [Crossref]
  24. Y. Cai, Q. Lin, H. T. Eyyuboǧlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).
    [Crossref] [PubMed]
  25. Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
    [Crossref] [PubMed]
  26. C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).
    [Crossref] [PubMed]
  27. P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Propagation property of a nonuniformly polarized beam array in turbulent atmosphere,” Appl. Opt. 50(9), 1234–1239 (2011).
    [Crossref] [PubMed]
  28. J. Zhang, S. Ding, and A. Dang, “Polarization property changes of optical beam transmission in atmospheric turbulent channels,” Appl. Opt. 56(18), 5145–5155 (2017).
    [Crossref] [PubMed]
  29. H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
    [Crossref]
  30. R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).
    [Crossref]
  31. H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
    [Crossref]
  32. W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
    [Crossref] [PubMed]
  33. L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).
    [Crossref] [PubMed]
  34. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  35. G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).
    [Crossref] [PubMed]
  36. S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).
    [Crossref]
  37. J. M. Martin and S. M. Flatté, “Intensity images and statistics from numerical simulation of wave propagation in 3-D random media,” Appl. Opt. 27(11), 2111–2126 (1988).
    [Crossref] [PubMed]
  38. C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
    [Crossref] [PubMed]

2018 (1)

2017 (2)

2016 (4)

2015 (2)

2014 (5)

G. Gbur, “Partially coherent beam propagation in atmospheric turbulence,” J. Opt. Soc. Am. A 31(9), 2038–2045 (2014).
[Crossref]

S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).
[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

C. Liang, F. Wang, X. Liu, Y. Cai, and O. Korotkova, “Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry,” Opt. Lett. 39(4), 769–772 (2014).
[Crossref] [PubMed]

2013 (1)

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).
[Crossref]

2012 (2)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).
[Crossref] [PubMed]

2011 (2)

P. Zhou, X. Wang, Y. Ma, H. Ma, X. Xu, and Z. Liu, “Propagation property of a nonuniformly polarized beam array in turbulent atmosphere,” Appl. Opt. 50(9), 1234–1239 (2011).
[Crossref] [PubMed]

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
[Crossref]

2010 (1)

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
[Crossref]

2009 (4)

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
[Crossref] [PubMed]

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref] [PubMed]

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).
[Crossref]

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
[Crossref]

2008 (2)

2004 (2)

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(12), 5448–5456 (2004).
[Crossref] [PubMed]

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

2003 (1)

2002 (1)

1988 (1)

1983 (3)

S. J. Wang, Y. Baykal, and M. A. Plonus, “Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulent atmosphere,” J. Opt. Soc. Am. 73(6), 831–837 (1983).
[Crossref]

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

1981 (1)

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).
[Crossref]

1979 (1)

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Andrews, L. C.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
[Crossref]

Avramon-Zamurovic, S.

Avramov-Zamurovic, S.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Banach, V. A.

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

Banakh, V. A.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

Barnett, S. M.

Basu, S.

Baykal, Y.

Berman, G. P.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
[Crossref]

Buldakov, V. M.

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

Cai, Y.

Cen, R.

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).
[Crossref]

Chen, Y.

Cheng, W.

Courtial, J.

Dang, A.

Davidson, F. M.

Ding, S.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Dong, Y.

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).
[Crossref]

Duan, M.

Eyyuboglu, H. T.

Fante, R. L.

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).
[Crossref]

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Flatté, S. M.

Franke-Arnold, S.

Gbur, G.

Gibson, G.

Gorshkov, V. N.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
[Crossref]

Gu, Y.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Y. Gu, O. Korotkova, and G. Gbur, “Scintillation of nonuniformly polarized beams in atmospheric turbulence,” Opt. Lett. 34(15), 2261–2263 (2009).
[Crossref] [PubMed]

Guo, L.

Guth, S.

Haus, J. W.

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Hyde, M. W.

Korotkova, O.

Leader, J. C.

Li, J.

Liang, C.

Lin, Q.

Liu, D.

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
[Crossref]

Liu, L.

Liu, X.

Liu, Z.

Lü, B.

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).
[Crossref]

Ma, D.

Ma, H.

Ma, Y.

Malek-Madani, R.

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Martin, J. M.

Mironov, V. L.

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

Nelson, C.

S. Avramon-Zamurovic, C. Nelson, S. Guth, and O. Korotkova, “Flatness parameter influence on scintillation reduction for multi-Gaussian Schell-model beams propagating in turbulent air,” Appl. Opt. 55(13), 3442–3446 (2016).
[Crossref]

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Nistazakis, H. E.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
[Crossref]

Padgett, M. J.

Pas’ko, V.

Phillips, R. L.

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
[Crossref]

Plonus, M. A.

Qian, X.

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Ricklin, J. C.

Tombras, G. S.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
[Crossref]

Torous, S. V.

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
[Crossref]

Tsiftsis, T. A.

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
[Crossref]

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Tyson, R. K.

Vasnetsov, M.

Voelz, D. G.

Wang, F.

Wang, H.

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
[Crossref]

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, S. J.

Wang, W.

Wang, X.

Wei, C.

Wei, J.

Willner, A. E.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wolf, E.

G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19(8), 1592–1598 (2002).
[Crossref]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Wu, D.

Wu, G.

Xiao, X.

Xu, X.

Xu, Y.

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yu, J.

Yuan, X.

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zeng, J.

Zhan, Q.

Zhang, J.

Zhang, Y.

Zhou, P.

Zhou, Z.

Y. Zhang, D. Ma, Z. Zhou, and X. Yuan, “Research on partially coherent flat-topped vortex hollow beam propagation in turbulent atmosphere,” Appl. Opt. 56(10), 2922–2926 (2017).
[Crossref] [PubMed]

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (2)

H. Wang, D. Liu, and Z. Zhou, “The propagation of radially polarized partially coherent beam through an optical system in turbulent atmosphere,” Appl. Phys. B 101(1–2), 361–369 (2010).
[Crossref]

R. Cen, Y. Dong, F. Wang, and Y. Cai, “Statistical properties of a cylindrical vector partially coherent beam in turbulent atmosphere,” Appl. Phys. B 112(2), 247–259 (2013).
[Crossref]

IET Commun. (1)

H. E. Nistazakis, T. A. Tsiftsis, and G. S. Tombras, “Performance analysis of free-space optical communication systems over atmospheric turbulence channels,” IET Commun. 3(8), 1402–1409 (2009).
[Crossref]

J. Mod. Opt. (1)

H. T. Eyyuboǧlu, “Scintillation behavior of vortex beams in strong turbulence region,” J. Mod. Opt. 63(21), 2374–2381 (2016).
[Crossref]

J. Opt. A-Pure. Appl. Op. (1)

J. Li and B. Lü, “Propagation of Gaussian Schell-model vortex beams through atmospheric turbulence and evolution of coherent vortices,” J. Opt. A-Pure. Appl. Op. 11(4), 045710 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (4)

J. Phys. B-At. Mol. Opt. (1)

G. P. Berman, V. N. Gorshkov, and S. V. Torous, “Scintillation reduction for laser beams propagating through turbulent atmosphere,” J. Phys. B-At. Mol. Opt. 44(5), 055402 (2011).
[Crossref]

Nat. Photonics (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Acta: Int. J. Opt. (1)

R. L. Fante, “Intensity fluctuations of an optical wave in a turbulent medium: effect of source coherence,” Opt. Acta: Int. J. Opt. 28(9), 1203–1207 (1981).
[Crossref]

Opt. Eng. (1)

O. Korotkova, L. C. Andrews, and R. L. Phillips, “Model for a partially coherent Gaussian beam in atmospheric turbulence with application in Lasercom,” Opt. Eng. 43(2), 330–341 (2004).
[Crossref]

Opt. Express (10)

J. Yu, F. Wang, L. Liu, Y. Cai, and G. Gbur, “Propagation properties of Hermite non-uniformly correlated beams in turbulence,” Opt. Express 26(13), 16333–16343 (2018).
[Crossref] [PubMed]

J. Li, W. Wang, M. Duan, and J. Wei, “Influence of non-Kolmogorov atmospheric turbulence on the beam quality of vortex beams,” Opt. Express 24(18), 20413–20423 (2016).
[Crossref] [PubMed]

J. Li, J. Zeng, and M. Duan, “Classification of coherent vortices creation and distance of topological charge conservation in non-Kolmogorov atmospheric turbulence,” Opt. Express 23(9), 11556–11565 (2015).
[Crossref] [PubMed]

G. Gibson, J. Courtial, M. J. Padgett, M. Vasnetsov, V. Pas’ko, S. M. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12(12), 5448–5456 (2004).
[Crossref] [PubMed]

W. Cheng, J. W. Haus, and Q. Zhan, “Propagation of vector vortex beams through a turbulent atmosphere,” Opt. Express 17(20), 17829–17836 (2009).
[Crossref] [PubMed]

L. Guo, Y. Chen, X. Liu, L. Liu, and Y. Cai, “Vortex phase-induced changes of the statistical properties of a partially coherent radially polarized beam,” Opt. Express 24(13), 13714–13728 (2016).
[Crossref] [PubMed]

G. Wu, F. Wang, and Y. Cai, “Coherence and polarization properties of a radially polarized beams with variable spatial coherence,” Opt. Express 20(27), 28301–28318 (2012).
[Crossref] [PubMed]

S. Basu, M. W. Hyde, X. Xiao, D. G. Voelz, and O. Korotkova, “Computational approaches for generating electromagnetic Gaussian Schell-model sources,” Opt. Express 22(26), 31691–31707 (2014).
[Crossref]

Y. Cai, Q. Lin, H. T. Eyyuboǧlu, and Y. Baykal, “Average irradiance and polarization properties of a radially or azimuthally polarized beam in a turbulent atmosphere,” Opt. Express 16(11), 7665–7673 (2008).
[Crossref] [PubMed]

C. Wei, D. Wu, C. Liang, F. Wang, and Y. Cai, “Experimental verification of significant reduction of turbulence-induced scintillation in a full Poincare beam,” Opt. Express 23(19), 24331–24341 (2015).
[Crossref] [PubMed]

Opt. Laser Technol. (1)

H. Wang, H. Wang, Y. Xu, and X. Qian, “Intensity and polarization properties of the partially coherent Laguerre-Gaussian vector beams with vortices propagating through turbulent atmosphere,” Opt. Laser Technol. 56, 1–6 (2014).
[Crossref]

Opt. Lett. (2)

Opt. Spectrosc. (2)

V. A. Banakh and V. M. Buldakov, “Effect of the initial degree of spatial coherence of a light beam on intensity fluctuations in a turbulent atmosphere,” Opt. Spectrosc. 55, 423–426 (1983).

V. A. Banach, V. M. Buldakov, and V. L. Mironov, “Intensity fluctuations of a partially coherent light beam in a turbulent atmosphere,” Opt. Spectrosc. 54, 626–629 (1983).

Proc. SPIE (1)

O. Korotkova, S. Avramov-Zamurovic, C. Nelson, R. Malek-Madani, Y. Gu, and G. Gbur, “Scintillation reduction in multi-Gaussian Schell-model beams propagating in atmospheric turbulence,” Proc. SPIE 9224, 92240M (2014).

Other (2)

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 2005).
[Crossref]

E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Computational propagation model for a PCRPV beam generating and propagating in the turbulent atmosphere. Part I: Three typical realizations of the modulus of CS. RPS: random phase screen.
Fig. 2
Fig. 2 Experimental setup for generating a PCRPV beam, measuring its spatial coherence width and the statistical properties of the beam propagating through thermally induced turbulence.The acronyms used in the figure are beam expander (BE); reflecting mirror (RM); linear polarizer (LP); Lens (L1–L4); rotating ground glass disk (RGGD); Gaussian amplitude filter (GAF); radially polarized converter (RPC); spiral phase plate (SPP); beam splitter (BS); charge coupled device (CCD1; CCD2).
Fig. 3
Fig. 3 (a)–(f) Density plot of the average intensity distribution of the GSM beam, PCV beam with l=1 and PCRPV beam with l=1 in the observation plane with C n 2=0, (a)–(c) simulation results; (d)–(f) experimental results. (g)–(i) the corresponding simulation and experimental results of the cross-lines of the average intensity distribution at ρy=0.
Fig. 4
Fig. 4 (a)–(f) Density plot of the average intensity distribution of the GSM beam, PCV beam with l=1 and PCRPV beam with l=1 in the observation plane with C n 2=2 × 10 9 m 2 / 3, (a)–(c) simulation results; (d)–(f) experimental results. (g)–(i) the corresponding simulation and experimental results of the cross-lines of the average intensity distribution at ρy=0.
Fig. 5
Fig. 5 Experimental (a) and simulation (c) results of the variation of the on-axis scintillation of the GSM beams, PCV beams and PCRP beams with the transverse coherence width. Experimental (b) and simulation (d) results of the on-axis SI of the PCRP beams and PCRPV beams with l = 1 and l = 2 against the coherence width.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 ) = [ W x x 0 ( r 1 , r 2 ) W x y 0 ( r 1 , r 2 ) W y x 0 ( r 1 , r 2 ) W y y 0 ( r 1 , r 2 ) ] ,
W α β 0 ( r 1 , r 2 ) = E 0 α * ( r 1 , 0 ) E 0 β ( r 2 , 0 ) , ( α , β = x , y ) .
W α β 0 ( r 1 , r 2 ) = E 0 α * ( r 1 , 0 ) E 0 β ( r 2 , 0 ) μ α β ( r 2 r 1 ) , ( α , β = x , y ) ,
E 0 x = r 1 exp  ( r 1 2 w 0 2 ) cos  φ 1 exp  ( i l φ 1 ) , E 0 y = r 2 exp  ( r 2 2 w 0 2 ) sin  φ 2 exp  ( i l φ 2 ) ,
μ α β ( Δ r ) = | B α β | exp  ( Δ r 2 2 δ α β 2 ) ,
E α ( r , 0 ) = E 0 α ( r , 0 ) T α ( r ) , ( α = x , y )
T α ( r ) = 0 , T α * ( r 1 ) T β ( r 2 ) = μ α β ( r ) , ( α , β = x , y ) .
S α β ( f ) = μ α β ( r ) exp  ( 2 π i f Δ r ) d 2 Δ r ,
S α β ( f ) = 2 π δ 0 2 exp  ( 2 π 2 δ 0 2 f 2 ) .
T ˜ α ( f ) = R α ( f ) S α α 1 / 2 ( f ) , ( α = x , y ) ,
Φ θ ( κ ) = 2 π z k 2 Φ n ( κ ) ,
Φ n ( κ ) = 0.033 C n 2 κ 11 / 3 ,
σ 2 ( x , y ) = I 2 ( x , y ) / I ( x , y ) 2 1 ,
x ¯ c = i j x i I t ( x i , y j ) / i j I t ( x i , y j ) ,
y ¯ c = i j y j I t ( x i , y j ) / i j I t ( x i , y j ) .
σ c 2 ( x ¯ c , y ¯ c ) = N N I n 2 ( x ¯ c , y ¯ c ) / I t 2 ( x ¯ c , y ¯ c ) 1 ,