Abstract

Fabrication errors currently hold back the large-scale adoption of silicon micro-ring modulators (MRMs). The ability to correct their spectral features post-fabrication is required to enable their commercialization. Here, we report and demonstrate an MRM that uses a tunable two-point coupling scheme, which maintains the MRM’s compact footprint (60 µm$\times$45 µm) and allows one to tune the MRM’s operating wavelength and adjust the optical bandwidth (and/or extinction ratio). This means that one can compensate for fabrication errors and thereby improve the yields. We confirm the modulator’s operation by showing NRZ and PAM-4 modulation, up to 28 Gb/s and 19.9 Gb/s, respectively. Also, the proposed tunable MRM maintains the microring’s free-spectral range (FSR), which proves its compatibility for configurable and high-bandwidth DWDM applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength-tunable silicon microring modulator

Po Dong, Roshanak Shafiiha, Shirong Liao, Hong Liang, Ning-Ning Feng, Dazeng Feng, Guoliang Li, Xuezhe Zheng, Ashok V. Krishnamoorthy, and Mehdi Asghari
Opt. Express 18(11) 10941-10946 (2010)

Compact bandwidth-tunable microring resonators

Long Chen, Nicolás Sherwood-Droz, and Michal Lipson
Opt. Lett. 32(22) 3361-3363 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  2. A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
    [Crossref]
  3. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  4. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
    [Crossref]
  5. L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
    [Crossref]
  6. S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
    [Crossref]
  7. Y. Xu, J. Lin, R. Dubé-Demers, S. LaRochelle, L. Rusch, and W. Shi, “Integrated flexible-grid WDM transmitter using an optical frequency comb in microring modulators,” Opt. Lett. 43(7), 1554–1557 (2018).
    [Crossref]
  8. Y. Ehrlichman, A. Khilo, and M. A. Popović, “Optimal design of a microring cavity optical modulator for efficient RF-to-optical conversion,” Opt. Express 26(3), 2462–2477 (2018).
    [Crossref]
  9. I.-L. Gheorma and R. Osgood, “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photonics Technol. Lett. 14(6), 795–797 (2002).
    [Crossref]
  10. H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22(12), 15178–15189 (2014).
    [Crossref]
  11. W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
    [Crossref]
  12. Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.
  13. J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. R. García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4(1), 6310 (2015).
    [Crossref]
  14. R. Dubé-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, and W. Shi, “Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics,” J. Lightwave Technol. 33(20), 4240–4252 (2015).
    [Crossref]
  15. S. Karimelahi and A. Sheikholeslami, “Ring modulator small-signal response analysis based on pole-zero representation,” Opt. Express 24(7), 7585–7599 (2016).
    [Crossref]
  16. S. Karimelahi, W. Rahman, M. Parvizi, N. Ben-Hamida, and A. Sheikholeslami, “Optical and electrical trade-offs of rib-to-contact distance in depletion-type ring modulators,” Opt. Express 25(17), 20202–20215 (2017).
    [Crossref]
  17. L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.
  18. Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
    [Crossref]
  19. J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.
  20. M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
    [Crossref]
  21. S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low $v_{\pi }$vπ silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23(18), 23526–23550 (2015).
    [Crossref]
  22. P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: Technical challenges and potential solutions,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. SM4B–3.
  23. P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
    [Crossref]
  24. M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
    [Crossref]
  25. M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).
  26. A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, and N. A. F. Jaeger, “Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers,” Opt. Lett. 43(24), 6041–6044 (2018).
    [Crossref]
  27. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32(22), 3361–3363 (2007).
    [Crossref]
  28. M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.
  29. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Experimental demonstration of a silicon-on-insulator high-performance double microring filter using MZI-based coupling,” Opt. Lett. 40(2), 276–279 (2015).
    [Crossref]
  30. H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.
  31. S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
    [Crossref]
  32. Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
    [Crossref]
  33. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).
  34. L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).
  35. X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
    [Crossref]
  36. H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
    [Crossref]
  37. R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica 3(6), 622–627 (2016).
    [Crossref]
  38. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
    [Crossref]
  39. H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
    [Crossref]
  40. A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.
  41. J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
    [Crossref]

2019 (2)

2018 (4)

2017 (3)

2016 (5)

S. Karimelahi and A. Sheikholeslami, “Ring modulator small-signal response analysis based on pole-zero representation,” Opt. Express 24(7), 7585–7599 (2016).
[Crossref]

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

R. Dubé-Demers, S. LaRochelle, and W. Shi, “Ultrafast pulse-amplitude modulation with a femtojoule silicon photonic modulator,” Optica 3(6), 622–627 (2016).
[Crossref]

M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
[Crossref]

2015 (5)

2014 (2)

2013 (1)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

2010 (4)

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]

2009 (1)

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

2002 (1)

I.-L. Gheorma and R. Osgood, “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photonics Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Absil, P.

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22(12), 15178–15189 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Ahmed, A. H.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Alloatti, L.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

Asghari, M.

Azadeh, S. S.

Ban, Y.

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

Barwicz, T.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Beausoleil, R. G.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Ben-Hamida, N.

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Boeck, R.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bogaerts, W.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Bois, A.

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Buca, D.

Casper, B.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Caverley, M.

Chen, L.

Cho, S.-H.

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

Choi, W.-Y.

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

Chrostowski, L.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

A. Mistry, M. Hammood, H. Shoman, L. Chrostowski, and N. A. F. Jaeger, “Bandwidth-tunable, FSR-free, microring-based, SOI filter with integrated contra-directional couplers,” Opt. Lett. 43(24), 6041–6044 (2018).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Experimental demonstration of a silicon-on-insulator high-performance double microring filter using MZI-based coupling,” Opt. Lett. 40(2), 276–279 (2015).
[Crossref]

R. Dubé-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, and W. Shi, “Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics,” J. Lightwave Technol. 33(20), 4240–4252 (2015).
[Crossref]

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

Cui, Y.-P.

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Cunningham, J. E.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Dong, P.

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: Technical challenges and potential solutions,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. SM4B–3.

Driscoll, J. B.

Dubé-Demers, R.

e. H. Schmid, J.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Ehrlichman, Y.

Fard, M. M. P.

M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
[Crossref]

Fard, S. T.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

Fédéli, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Feng, D.

Feng, N.-N.

Flückiger, J.

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Flueckiger, J.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

García, S. R.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. R. García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4(1), 6310 (2015).
[Crossref]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Gheorma, I.-L.

I.-L. Gheorma and R. Osgood, “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photonics Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Hai, M. S.

M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
[Crossref]

Hammood, M.

Hao, Y.

Hartmann, J.-M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Hauck, J.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. R. García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4(1), 6310 (2015).
[Crossref]

Hochberg, M.

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Hosseini, E. S.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Ippen, E. P.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Jaeger, N. A. F.

Jayatilleka, H.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Jhoja, J.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Jiang, X.

Kaertner, F.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Karimelahi, S.

Khilo, A.

Kim, K.

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: Technical challenges and potential solutions,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. SM4B–3.

Klein, J.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Krishnamoorthy, A. V.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

Kumar, R.

LaRochelle, S.

Lee, J.-M.

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

Lepage, G.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Li, G.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

Li, Y.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Liang, H.

Liao, S.

Liboiron-Ladouceur, O.

M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
[Crossref]

Lin, J.

Lin, S.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

Lipson, M.

Liu, A.

Lu, Z.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Luo, Y.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Madsen, C. K.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).

Manipatruni, S.

Manolatou, C.

Mantl, S.

Marris-Morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Masood, A.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Melikyan, A.

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: Technical challenges and potential solutions,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. SM4B–3.

Merget, F.

Mirabbasi, S.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Mistry, A.

Moazeni, S.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

Moscoso-Mártir, A.

Müller, J.

Murray, K.

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

O’Brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Osgood, R.

I.-L. Gheorma and R. Osgood, “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photonics Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Pantouvaki, M.

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22(12), 15178–15189 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Park, A. H.

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Parvizi, M.

Plant, D. V.

Pond, J.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Poon, J. K.

Popovic, M.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

Popovic, M. A.

Y. Ehrlichman, A. Khilo, and M. A. Popović, “Optimal design of a microring cavity optical modulator for efficient RF-to-optical conversion,” Opt. Express 26(3), 2462–2477 (2018).
[Crossref]

M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[Crossref]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Rahman, W.

Raj, K.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Rakich, P. T.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Ram, R. J.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Romero-García, S.

Rong, H.

Rusch, L.

Sacher, W. D.

Sakib, M.

Shafiiha, R.

Sharkia, A.

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

Sheikholeslami, A.

Shekhar, S.

H. Jayatilleka, H. Shoman, L. Chrostowski, and S. Shekhar, “Photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits,” Optica 6(1), 84–91 (2019).
[Crossref]

H. Jayatilleka, H. Shoman, R. Boeck, N. A. F. Jaeger, L. Chrostowski, and S. Shekhar, “Automatic configuration and wavelength locking of coupled silicon ring resonators,” J. Lightwave Technol. 36(2), 210–218 (2018).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

Shen, B.

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. R. García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4(1), 6310 (2015).
[Crossref]

Sherwood-Droz, N.

Shi, W.

Shoman, H.

Shubin, I.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Smith, H. I.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Socci, L.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Song, M.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Stojanovic, V.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

St-Yves, J.

Sun, J.

J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, and H. Rong, “A 128 Gb/s PAM4 silicon microring modulator with integrated thermo-optic resonance tuning,” J. Lightwave Technol. 37(1), 110–115 (2019).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Thacker, H.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Van Campenhout, J.

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22(12), 15178–15189 (2014).
[Crossref]

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Van Thourhout, D.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Verheyen, P.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

von den Driesch, N.

Wade, M.

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

Wang, X.

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

Wang, Y.

R. Dubé-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, and W. Shi, “Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics,” J. Lightwave Technol. 33(20), 4240–4252 (2015).
[Crossref]

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[Crossref]

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

Willner, A. E.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Witzens, J.

Wu, P.-Q.

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Wu, Y.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

Xu, D.-X.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Xu, Y.

Xue, X.-J.

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Yang, J.

Yang, J.-Y.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Yao, J.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

Ying, D.

Yu, B.-M.

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

Yu, H.

Zhang, L.

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

Zhang, T.

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Zhang, X.-Y.

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).

Zheng, X.

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

Zhong, Q.

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, “Ring resonator modulators in silicon for interchip photonic links,” IEEE J. Sel. Top. Quantum Electron. 19(6), 95–113 (2013).
[Crossref]

L. Zhang, Y. Li, J.-Y. Yang, M. Song, R. G. Beausoleil, and A. E. Willner, “Silicon-based microring resonator modulators for intensity modulation,” IEEE J. Sel. Top. Quantum Electron. 16(1), 149–158 (2010).
[Crossref]

A. H. Ahmed, A. Sharkia, B. Casper, S. Mirabbasi, and S. Shekhar, “Silicon-photonics microring links for datacenters - challenges and opportunities,” IEEE J. Sel. Top. Quantum Electron. 22(6), 194–203 (2016).
[Crossref]

M. S. Hai, M. M. P. Fard, and O. Liboiron-Ladouceur, “A ring-based 25 Gb/s DAC-less PAM-4 modulator,” IEEE J. Sel. Top. Quantum Electron. 22(6), 123–130 (2016).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popović, and V. Stojanović, “A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS,” IEEE J. Solid-State Circuits 52(12), 3503–3516 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

I.-L. Gheorma and R. Osgood, “Fundamental limitations of optical resonator based high-speed EO modulators,” IEEE Photonics Technol. Lett. 14(6), 795–797 (2002).
[Crossref]

Z. Lu, K. Murray, H. Jayatilleka, and L. Chrostowski, “Michelson interferometer thermo-optic switch on SOI with a 50-$\mu$μw power consumption,” IEEE Photonics Technol. Lett. 27(22), 2319–2322 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-Morini, E. Cassan, L. Virot, J.-M. Fédéli, J.-M. Hartmann, J. e. H. Schmid, D.-X. Xu, F. Boeuf, P. O’Brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

X.-Y. Zhang, T. Zhang, X.-J. Xue, Y.-P. Cui, and P.-Q. Wu, “Resonant frequency shift characteristic of integrated optical ring resonators with tunable couplers,” J. Opt. A: Pure Appl. Opt. 11(8), 085411 (2009).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. S. Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5(1), 4008 (2014).
[Crossref]

Nat. Photonics (1)

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Opt. Express (10)

Y. Ehrlichman, A. Khilo, and M. A. Popović, “Optimal design of a microring cavity optical modulator for efficient RF-to-optical conversion,” Opt. Express 26(3), 2462–2477 (2018).
[Crossref]

S. Karimelahi and A. Sheikholeslami, “Ring modulator small-signal response analysis based on pole-zero representation,” Opt. Express 24(7), 7585–7599 (2016).
[Crossref]

S. Karimelahi, W. Rahman, M. Parvizi, N. Ben-Hamida, and A. Sheikholeslami, “Optical and electrical trade-offs of rib-to-contact distance in depletion-type ring modulators,” Opt. Express 25(17), 20202–20215 (2017).
[Crossref]

H. Yu, D. Ying, M. Pantouvaki, J. Van Campenhout, P. Absil, Y. Hao, J. Yang, and X. Jiang, “Trade-off between optical modulation amplitude and modulation bandwidth of silicon micro-ring modulators,” Opt. Express 22(12), 15178–15189 (2014).
[Crossref]

W. D. Sacher and J. K. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008).
[Crossref]

S. Manipatruni, L. Chen, and M. Lipson, “Ultra high bandwidth WDM using silicon microring modulators,” Opt. Express 18(16), 16858–16867 (2010).
[Crossref]

P. Dong, R. Shafiiha, S. Liao, H. Liang, N.-N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18(11), 10941–10946 (2010).
[Crossref]

Z. Lu, J. Jhoja, J. Klein, X. Wang, A. Liu, J. Flueckiger, J. Pond, and L. Chrostowski, “Performance prediction for silicon photonics integrated circuits with layout-dependent correlated manufacturing variability,” Opt. Express 25(9), 9712–9733 (2017).
[Crossref]

M. A. Popović, C. Manolatou, and M. R. Watts, “Coupling-induced resonance frequency shifts in coupled dielectric multi-cavity filters,” Opt. Express 14(3), 1208–1222 (2006).
[Crossref]

S. S. Azadeh, F. Merget, S. Romero-García, A. Moscoso-Mártir, N. von den Driesch, J. Müller, S. Mantl, D. Buca, and J. Witzens, “Low $v_{\pi }$vπ silicon photonics modulators with highly linear epitaxially grown phase shifters,” Opt. Express 23(18), 23526–23550 (2015).
[Crossref]

Opt. Lett. (4)

Optica (2)

Sci. Rep. (1)

J. Müller, F. Merget, S. S. Azadeh, J. Hauck, S. R. García, B. Shen, and J. Witzens, “Optical peaking enhancement in high-speed ring modulators,” Sci. Rep. 4(1), 6310 (2015).
[Crossref]

Other (10)

M. Popović, “Theory and design of high-index-contrast microphotonic circuits,” Ph.D. thesis, Massachusetts Institute of Technology (2008).

P. Dong, A. Melikyan, and K. Kim, “Commercializing silicon microring resonators: Technical challenges and potential solutions,” in CLEO: Science and Innovations, (Optical Society of America, 2018), pp. SM4B–3.

J. Pond, J. Klein, J. Flückiger, X. Wang, Z. Lu, J. Jhoja, and L. Chrostowski, “Predicting the yield of photonic integrated circuits using statistical compact modeling,” in Integrated Optics: Physics and Simulations III, (International Society for Optics and Photonics, 2017), vol. 10242, p. 102420S.

H. Shoman, H. Jayatilleka, A. H. Park, N. A. F. Jaeger, S. Shekhar, and L. Chrostowski, “Compact silicon microring modulator with tunable extinction ratio and wide FSR,” in 2018 Optical Fiber Communications Conference and Exposition (OFC), (IEEE, 2018), pp. 1–3.

M. R. Watts, T. Barwicz, M. A. Popović, P. T. Rakich, L. Socci, E. P. Ippen, H. I. Smith, and F. Kaertner, “Microring-resonator filter with doubled free-spectral-range by two-point coupling,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2005), p. CMP3.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis (Wiley, 1999).

L. Chrostowski and M. Hochberg, Silicon Photonics Design: From Devices to Systems (Cambridge University, 2015).

Y. Ban, J.-M. Lee, B.-M. Yu, S.-H. Cho, and W.-Y. Choi, “Small-signal frequency responses for Si micro-ring modulators,” in 2014 Optical Interconnects Conference, (IEEE, 2014), pp. 47–48.

L. Chrostowski, X. Wang, J. Flueckiger, Y. Wu, Y. Wang, and S. T. Fard, “Impact of fabrication non-uniformity on chip-scale silicon photonic integrated circuits,” in Optical Fiber Communication Conference, (Optical Society of America, 2014), pp. Th2A–37.

A. Masood, M. Pantouvaki, G. Lepage, P. Verheyen, J. Van Campenhout, P. Absil, D. Van Thourhout, and W. Bogaerts, “Comparison of heater architectures for thermal control of silicon photonic circuits,” in 10th International Conference on Group IV Photonics, (IEEE, 2013), pp. 83–84.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Simulated (a) resonant frequency shift, and (b) OBW change of the TE-mode of a 10 µm radius $220\times 500$ nm rib with a 90 nm slab SOI MRM coupled to a straight waveguide, due to $\pm 3\sigma _{\textrm {W}}$ and $\pm 3\sigma _{\textrm {H}}$ in the MRM’s width and height, respectively. In Fig. 1(a) only the independent MRR resonance frequency was considered, neglecting the bus waveguide coupling induced resonance frequency shifts [20]. The color bar indicates the change in the resonant frequency in GHz. In Fig. 1(b), the ring loss was set to 71 dB/cm [21], and the designed gap was set to 210 nm at 500 nm waveguide width, corresponding to a bus-ring power coupling coefficient of 10% for critical coupling. For each waveguide width variation ($\pm \delta$W), the coupling gap was also changed by $\mp 2\delta$W representing over- and under-etching of the bus and ring waveguides. The color bar indicates the OBW in GHz.
Fig. 2.
Fig. 2. (a) Layout of the tunable ER modulator, (b) cross-section of the device at the white dashed line in Fig. 2(a), and (c) a micrograph of the device.
Fig. 3.
Fig. 3. (a) Simulated maximum coupling to the ring for various point couplers’ coupling coefficients. (b) Simulated coupling to the 10 µm radius ring. The coupling to the ring and the ring’s response (without the tunable coupler) is shown in the top plot. The bottom plot shows the MRM response (with the tunable coupler) for $\kappa ^2=11.3\%$. The ring loss was set to 71 dB/cm, and the ring resonances were aligned to the wavelengths that would yield critical coupling.
Fig. 4.
Fig. 4. (a) Optical spectrum of the MRM, in over-, under- and the critically coupled conditions. The spectra were measured by sweeping the tunable coupler’s top arm heater power (heater A). (b) Measured ER and coupling to the MRR at various heater powers. (c) Measured optical bandwidth and total quality factor (${\mathcal {Q}}$-factor) as functions of the heater power. (d) Measured optical transmission of the doped MRM before and after tuning the extinction ratio to its maximum. The primary (used for modulation) and secondary resonances are indicated in the plot.
Fig. 5.
Fig. 5. (a) Measured through-port spectra after tuning heater A and heater B to align the MRM resonances to 4 different channels with 125 GHz spacing, and maximize the ER. (b) The electrical power consumed by each heater when tuning the MRMs’ wavelengths across a 125 GHz spacing. (c) Measured wavelength redshift (at 1550.2 nm wavelength) due to a reverse bias voltage applied across the PN junction. (d) Extracted change in the effective index and additional loss as a function of the PN junction bias voltage.
Fig. 6.
Fig. 6. (a) Experimental setup used to generate the PAM-4 electrical data. A similar setup using only a single psuedo-random binary sequence generator (PRBSG) was used for generating the NRZ electrical data. (b) Through-port transmission of the modulator at various static optical ERs when biased at -2V. For each optical response, the modulation wavelength was tuned (indicated using dotted lines at 1555.195 nm, 1555.205 nm, and 1555.22 nm) for the same input optical powers as indicated within the plot.
Fig. 7.
Fig. 7. (a) Input electrical 19.906 Gb/s PAM-4 eye diagram used to modulate the modulator. Output optical eye diagrams at (b) 11.8 dB, (c) 16.1 dB, and (d) 24 dB static optical ER at the modulation wavelengths shown in Fig. 6(b), respectively. (e) Electrical 28 Gb/s NRZ input, (f) optical 28 Gb/s NRZ output at 30 dB static optical ER.
Fig. 8.
Fig. 8. (a) Measured change in optical transmission as a function of both the optical ER and the bias voltage across the PN junction. The ER was tuned by increasing the electrical power supplied to heater A (to change the coupling condition from the undercoupled state to the critically coupled state). The colorbar indicates the normalized linear optical transmission. The laser’s CW wavelength was always set to the MRM’s resonance frequency at 0V bias, thus the transmission is minimum at 0V for every ER value. (b) Measured change in optical transmission as a function of the bias voltage across the modulator, when the ER was set to 12.6 dB (as indicated by the dashed white line in Fig. 8(a)). The voltages input to the modulator in terms of the PRBS voltages are given by Eqs. (5)–(8) in Appendix B.
Fig. 9.
Fig. 9. (a) Measured vector network analyzer (VNA) response at various PN junction bias. For each PN junction bias, the CW laser wavelength was set to yield the same insertion loss of 10 dB (as indicated by the dotted line in Fig. 9(b)). The obtained electro-optical 3-dB frequency response was between $24.8-28.9$ GHz as the PN junction bias voltage varied between 0 to -3V. (b) Measured through-port spectra for various PN junction bias voltages after tuning the optical ER to 25 dB. The dotted lines show the CW laser set wavelength for each PN junction bias.
Fig. 10.
Fig. 10. Schematics of a silicon photonic DWDM Tx architecture where a single multi-wavelength laser feeds an array of on-chip modulators through a single bus waveguide. (a) Using a conventional MRR, the number of modulators (and thus data capacity) is limited by the FSR of the MRR, whereas (b) shows the same architecture with the proposed modulator (same MRRs’ radii as those shown in Fig. 10(a)), where data capacity can be doubled due to the doubled-FSR.
Fig. 11.
Fig. 11. (a) Simulated coupling to the 10 µm radius ring. The coupling to the ring and the ring’s response (without the tunable coupler) is shown in the top plot. The bottom plot shows the MRM response (with the tunable coupler) for $\kappa ^2=2.36\%$. The ring loss was set to 76 dB/cm, and the ring primary resonances were aligned to the wavelengths that would yield critical coupling. (b) The secondary resonances ER as a function of the ring loss for $\kappa ^2=11.3\%$ and $\kappa ^2=50\%$. The ER (clipped to 30 dB) is calculated using Eq. (4) in Appendix A. (c) Measured optical response of an undoped (lower ring internal loss) MZI-based tunable MRR before and after tuning the ER. (d) The simulated MRM through-port response and coupling to the MRR for $\kappa ^2=11.3\%$ and ring losses of 12 dB/cm (top) and $\kappa ^2=50\%$ and ring losses of 76 dB/cm (bottom).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ f Δ W c λ q d n eff / d W n g ,
Δ f 3-dB = c ln ( γ 1 κ 2 ) 2 π 2 R n g ,
| H 11 ( ω ) | 2 = ( 1 κ 2 ) 2 γ 1 κ 2 cos ( ω ϕ ) + γ 2 1 2 γ 1 κ 2 cos ( ω ϕ ) + ( 1 κ 2 ) γ 2 ,
ER dB = 20 log 10 [ ( 1 κ 2 + γ ) ( 1 κ 2 γ 1 ) ( 1 κ 2 γ ) ( 1 κ 2 γ + 1 ) ] .
V a = V bias + | V 1,pp + V 2,pp 2 | ,
V b = V bias + | V 2,pp V 1,pp 2 | ,
V c = V bias | V 2,pp V 1,pp 2 | ,
V d = V bias | V 1,pp + V 2,pp 2 | .

Metrics