Abstract

Quantum entanglement and coherence are both essential physical resources in quantum theory. Cold polar molecules have long coherence time and strong dipole-dipole interaction and thus have been suggested as a platform for quantum information processing. In this paper, we employ the pendular states of the polar molecules trapped in static electric fields as the qubits, and put forward several theoretical schemes to generate the entanglement and coherence for two coupled dipoles by using optimal control theory. Through the designs of appropriate laser pulses, the transitions from the ground state to the Bell state and maximally coherent state can be realized with high fidelities 0.9906 and 0.9943 in the two-dipole system, respectively. Meanwhile, we show that the degrees of entanglement and coherence between the two pendular qubits are effectively enhanced with the help of optimized control fields. Furthermore, our schemes are generalized to the preparation of the Hardy state and even to the creation of arbitrary two-qubit states. Our findings can shed some light on the implementation of quantum information tasks with the molecular pendular states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-entangled photon pairs from a single molecule

Mohammad Rezai, Jörg Wrachtrup, and Ilja Gerhardt
Optica 6(1) 34-40 (2019)

Teleportation of superposed coherent states using nonmaximally entangled resources

Hari Prakash and Manoj K. Mishra
J. Opt. Soc. Am. B 29(10) 2915-2923 (2012)

Atomic entanglement purification and concentration using coherent state input-output process in low-Q cavity QED regime

Cong Cao, Chuan Wang, Ling-yan He, and Ru Zhang
Opt. Express 21(4) 4093-4105 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
    [Crossref]
  2. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
    [Crossref]
  3. L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
    [Crossref]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
    [Crossref]
  5. L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
    [Crossref]
  6. H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
    [Crossref]
  7. E. R. Hudson and W. C. Campbell, “Dipolar quantum logic for freely rotating trapped molecular ions,” Phys. Rev. A 98, 040302 (2018).
    [Crossref]
  8. J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109, 1648–1653 (1998).
    [Crossref]
  9. Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
    [Crossref]
  10. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
    [Crossref]
  11. B.-C. Ren and F.-G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
    [Crossref] [PubMed]
  12. N. Chancellor and S. Haas, “Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits,” Phys. Rev. A 87, 042321 (2013).
    [Crossref]
  13. C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
    [Crossref] [PubMed]
  14. T. Liu, B.-Q. Guo, C.-S. Yu, and W.-N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018).
    [Crossref] [PubMed]
  15. D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88, 067901 (2002).
    [Crossref] [PubMed]
  16. L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
    [Crossref]
  17. O. Dulieu and C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72, 086401 (2009).
    [Crossref]
  18. J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
    [Crossref] [PubMed]
  19. A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
    [Crossref] [PubMed]
  20. D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
    [Crossref] [PubMed]
  21. S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
    [Crossref]
  22. K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
    [Crossref] [PubMed]
  23. X. Xie, S. Yu, W. Li, S. Wang, and Y. Chen, “Routes of odd-even harmonic emission from oriented polar molecules,” Opt. Express 26, 18578–18596 (2018).
    [Crossref] [PubMed]
  24. S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
    [Crossref]
  25. F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
    [Crossref]
  26. M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
    [Crossref] [PubMed]
  27. Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
    [Crossref] [PubMed]
  28. K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
    [Crossref] [PubMed]
  29. L.-M. Duan and G-C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997).
    [Crossref]
  30. W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Phys. Rev. Lett. 90, 067901 (2003).
    [Crossref] [PubMed]
  31. A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
    [Crossref]
  32. K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
    [Crossref]
  33. Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
    [Crossref] [PubMed]
  34. Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
    [Crossref] [PubMed]
  35. Y.-Y. Liao, “Anticrossing-mediated entanglement of adsorbed polar molecules,” Phys. Rev. A 85, 023415 (2012).
    [Crossref]
  36. M. Vatasescu, “Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system,” Phys. Rev. A 88, 063415 (2013).
    [Crossref]
  37. Y.-J. Li and J.-M. Liu, “Tripartite quantum correlations of polar molecules in pendular states,” Acta Phys. Sin. 63, 200302 (2014).
  38. Z.-Y. Zhang and J.-M. Liu, “Quantum correlations and coherence of polar symmetric top molecules in pendular states,” Sci. Rep. 7, 17822 (2017).
    [Crossref] [PubMed]
  39. Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
    [Crossref]
  40. T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
    [Crossref]
  41. F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
    [Crossref]
  42. H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
    [Crossref] [PubMed]
  43. L. H. Coudert, “Optimal orientation of an asymmetric top molecule with terahertz pulses,” J. Chem. Phys. 146, 024303 (2017).
    [Crossref] [PubMed]
  44. L. H. Coudert, “Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses,” J. Chem. Phys. 148, 094306 (2018).
    [Crossref]
  45. K. Mishima and K. Yamashita, “Quantum computing using rotational modes of two polar molecules,” Chem. Phys. 361, 106–117 (2009).
    [Crossref]
  46. P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
    [Crossref] [PubMed]
  47. J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
    [Crossref] [PubMed]
  48. Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
    [Crossref]
  49. C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
    [Crossref]
  50. A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
    [Crossref] [PubMed]
  51. Y. Kurosaki and K. Yokoyama, “Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules,” Chem. Phys. 493, 183–193 (2017).
    [Crossref]
  52. A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
    [Crossref]
  53. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [Crossref]
  54. T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
    [Crossref] [PubMed]
  55. W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
    [Crossref]
  56. L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
    [Crossref]
  57. L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71, 1665–1668 (1993).
    [Crossref] [PubMed]
  58. S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
    [Crossref]
  59. B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
    [Crossref]
  60. B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
    [Crossref] [PubMed]
  61. J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
    [Crossref]
  62. B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
    [Crossref]

2018 (14)

E. R. Hudson and W. C. Campbell, “Dipolar quantum logic for freely rotating trapped molecular ions,” Phys. Rev. A 98, 040302 (2018).
[Crossref]

T. Liu, B.-Q. Guo, C.-S. Yu, and W.-N. Zhang, “One-step implementation of a hybrid Fredkin gate with quantum memories and single superconducting qubit in circuit QED and its applications,” Opt. Express 26, 4498–4511 (2018).
[Crossref] [PubMed]

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

X. Xie, S. Yu, W. Li, S. Wang, and Y. Chen, “Routes of odd-even harmonic emission from oriented polar molecules,” Opt. Express 26, 18578–18596 (2018).
[Crossref] [PubMed]

K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
[Crossref] [PubMed]

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
[Crossref]

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
[Crossref] [PubMed]

L. H. Coudert, “Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses,” J. Chem. Phys. 148, 094306 (2018).
[Crossref]

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

2017 (5)

Y. Kurosaki and K. Yokoyama, “Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules,” Chem. Phys. 493, 183–193 (2017).
[Crossref]

L. H. Coudert, “Optimal orientation of an asymmetric top molecule with terahertz pulses,” J. Chem. Phys. 146, 024303 (2017).
[Crossref] [PubMed]

Z.-Y. Zhang and J.-M. Liu, “Quantum correlations and coherence of polar symmetric top molecules in pendular states,” Sci. Rep. 7, 17822 (2017).
[Crossref] [PubMed]

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

2016 (3)

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
[Crossref]

2014 (5)

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Y.-J. Li and J.-M. Liu, “Tripartite quantum correlations of polar molecules in pendular states,” Acta Phys. Sin. 63, 200302 (2014).

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

B.-C. Ren and F.-G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

2013 (4)

N. Chancellor and S. Haas, “Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits,” Phys. Rev. A 87, 042321 (2013).
[Crossref]

M. Vatasescu, “Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system,” Phys. Rev. A 88, 063415 (2013).
[Crossref]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

2012 (2)

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Y.-Y. Liao, “Anticrossing-mediated entanglement of adsorbed polar molecules,” Phys. Rev. A 85, 023415 (2012).
[Crossref]

2011 (3)

P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

2010 (1)

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

2009 (4)

K. Mishima and K. Yamashita, “Quantum computing using rotational modes of two polar molecules,” Chem. Phys. 361, 106–117 (2009).
[Crossref]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

O. Dulieu and C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72, 086401 (2009).
[Crossref]

Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
[Crossref]

2008 (1)

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

2007 (2)

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[Crossref]

K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
[Crossref]

2006 (1)

S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
[Crossref]

2004 (1)

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

2003 (1)

W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Phys. Rev. Lett. 90, 067901 (2003).
[Crossref] [PubMed]

2002 (2)

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88, 067901 (2002).
[Crossref] [PubMed]

L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
[Crossref]

2000 (1)

S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
[Crossref]

1998 (4)

W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
[Crossref]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109, 1648–1653 (1998).
[Crossref]

1997 (3)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
[Crossref]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

L.-M. Duan and G-C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997).
[Crossref]

1993 (2)

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71, 1665–1668 (1993).
[Crossref] [PubMed]

A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
[Crossref]

1982 (1)

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
[Crossref]

Ai, Q.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Allouche, A. R.

A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
[Crossref]

Almond, J. R.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

Aubert-Frékon, M.

A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
[Crossref]

Averbukh, I. Sh.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Barnett, S. M.

S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
[Crossref]

Barry, J. F.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

Baumgratz, T.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Bause, R.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Blatt, R.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Bloch, I.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Bomble, L.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

Botina, J.

W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
[Crossref]

Briegel, H.-J.

W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Phys. Rev. Lett. 90, 067901 (2003).
[Crossref] [PubMed]

Caldwell, L.

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Campbell, W. C.

E. R. Hudson and W. C. Campbell, “Dipolar quantum logic for freely rotating trapped molecular ions,” Phys. Rev. A 98, 040302 (2018).
[Crossref]

Cao, Y.

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

Carr, L. D.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

Castelano, L. K.

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

Chancellor, N.

N. Chancellor and S. Haas, “Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits,” Phys. Rev. A 87, 042321 (2013).
[Crossref]

Chen, Y.

Cheng, Y.-C.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Chotia, A.

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Chou, Y.

Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
[Crossref]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
[Crossref]

Côté, R.

S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
[Crossref]

Coudert, L. H.

L. H. Coudert, “Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses,” J. Chem. Phys. 148, 094306 (2018).
[Crossref]

L. H. Coudert, “Optimal orientation of an asymmetric top molecule with terahertz pulses,” J. Chem. Phys. 146, 024303 (2017).
[Crossref] [PubMed]

Covey, J. P.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Cramer, M.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Datta, A.

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[Crossref]

de Lima, E. F.

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

DeMille, D.

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88, 067901 (2002).
[Crossref] [PubMed]

Deng, F.-G.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

B.-C. Ren and F.-G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

Deng, H.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Desouter-Lecomte, M.

P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
[Crossref] [PubMed]

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

Devlin, J. A.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

DiVincenzo, D. P.

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Duan, L.-M.

L.-M. Duan and G-C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997).
[Crossref]

Dulieu, O.

O. Dulieu and C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72, 086401 (2009).
[Crossref]

Dür, W.

W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Phys. Rev. Lett. 90, 067901 (2003).
[Crossref] [PubMed]

Fanchini, F. F.

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

Feynman, R. P.

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
[Crossref]

Fitch, N. J.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Franke, S.

S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
[Crossref]

Friedrich, B.

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Gabbanini, C.

O. Dulieu and C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72, 086401 (2009).
[Crossref]

Gadway, B.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

Ghesquière, P.

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

Glöckner, R.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

Goan, H.-S.

Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
[Crossref]

Gohle, C.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Gong, X.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Grimes, D. D.

K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
[Crossref] [PubMed]

Grover, L. K.

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

Guo, B.-Q.

Guo, G-C.

L.-M. Duan and G-C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997).
[Crossref]

Guo, Q.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Haas, S.

N. Chancellor and S. Haas, “Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits,” Phys. Rev. A 87, 042321 (2013).
[Crossref]

Häffner, H.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Halverson, T.

T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
[Crossref]

Hambach, M.

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Hardy, L.

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71, 1665–1668 (1993).
[Crossref] [PubMed]

Hazzard, K. R. A.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

Herrera, F.

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

Herschbach, D.

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

Hinds, E. A.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Ho, T.-S.

H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
[Crossref] [PubMed]

Hu, Z.

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

Huang, K.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Huang, S.-Y.

Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
[Crossref]

Hudson, E. R.

E. R. Hudson and W. C. Campbell, “Dipolar quantum logic for freely rotating trapped molecular ions,” Phys. Rev. A 98, 040302 (2018).
[Crossref]

Huyet, G.

S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
[Crossref]

Ibrügger, M.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

Iouchtchenko, D.

T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
[Crossref]

Ji, Q.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Ji, Y. H.

Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
[Crossref]

Jin, D. S.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Jones, J. A.

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109, 1648–1653 (1998).
[Crossref]

Kais, S.

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Karra, M.

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

Kirby, K.

S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
[Crossref]

Kotochigova, S.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Krems, R. V.

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

Kurosaki, Y.

Y. Kurosaki and K. Yokoyama, “Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules,” Chem. Phys. 493, 183–193 (2017).
[Crossref]

Lambert, N.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Lei, X. L.

L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
[Crossref]

Li, H.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Li, M.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Li, W.

Li, Y.-J.

Y.-J. Li and J.-M. Liu, “Tripartite quantum correlations of polar molecules in pendular states,” Acta Phys. Sin. 63, 200302 (2014).

Liao, Y.-Y.

Y.-Y. Liao, “Anticrossing-mediated entanglement of adsorbed polar molecules,” Phys. Rev. A 85, 023415 (2012).
[Crossref]

Lim, J.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

Lin, K.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Lindinger, A.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Liu, G. Q.

Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
[Crossref]

Liu, J.-M.

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

Z.-Y. Zhang and J.-M. Liu, “Quantum correlations and coherence of polar symmetric top molecules in pendular states,” Sci. Rep. 7, 17822 (2017).
[Crossref] [PubMed]

Y.-J. Li and J.-M. Liu, “Tripartite quantum correlations of polar molecules in pendular states,” Acta Phys. Sin. 63, 200302 (2014).

Liu, S. Y.

L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
[Crossref]

Liu, T.

Liu, W.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Long, G.-L.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Lopez-Richard, V.

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

Loss, D.

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

Lu, P.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Luo, X.-Y.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Lupulescu, C.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Ma, J.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

McCarron, D. J.

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

Merli, A.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Mishima, K.

K. Mishima and K. Yamashita, “Quantum computing using rotational modes of two polar molecules,” Chem. Phys. 361, 106–117 (2009).
[Crossref]

K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
[Crossref]

Mosca, M.

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109, 1648–1653 (1998).
[Crossref]

Moses, S. A.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Neyenhuis, B.

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Ni, K.-K.

K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
[Crossref] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
[Crossref]

Nori, F.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Norrgard, E. B.

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

Pellegrini, P.

P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
[Crossref] [PubMed]

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

Petrov, A.

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Plenio, M. B.

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

Plewicki, M.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Prehn, A.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

Prior, Y.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Qiang, J.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Rabitz, H.

H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
[Crossref] [PubMed]

W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
[Crossref]

Rempe, G.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

Ren, B.-C.

B.-C. Ren and F.-G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

Rey, A. M.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

Rivera-Ruiz, C. M.

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

Roos, C. F.

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Rosenband, T.

K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
[Crossref] [PubMed]

Roy, P.-N.

T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
[Crossref]

Ruan, D.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Sauer, B. E.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Seeßelberg, F.

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

Sharma, K.

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

Shioya, K.

K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
[Crossref]

Shor, P. W.

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
[Crossref]

Song, C.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Song, Q.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Steinecker, M. H.

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

Sun, F.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Tao, M.-J.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Tarbutt, M. R.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Trigatzis, M. A.

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

Truppe, S.

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Tutunnikov, I.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Vatasescu, M.

M. Vatasescu, “Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system,” Phys. Rev. A 88, 063415 (2013).
[Crossref]

Vetter, F.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Vidal, G.

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[Crossref]

Vranckx, S.

P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
[Crossref] [PubMed]

Wang, B.-X.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Wang, H.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Wang, S.

Wang, Z. S.

Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
[Crossref]

Wannous, G.

A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
[Crossref]

Weber, S. M.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Wei, D.

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

Wei, L. F.

L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
[Crossref]

Wei, Q.

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Whaley, K. B.

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

Williams, H. J.

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

Wöste, L.

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

Wu, J.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Xie, X.

Xin, T.

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Xu, D.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Xu, K.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Yamashita, K.

K. Mishima and K. Yamashita, “Quantum computing using rotational modes of two polar molecules,” Chem. Phys. 361, 106–117 (2009).
[Crossref]

K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
[Crossref]

Yan, B.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

Ye, J.

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

Yelin, S. F.

S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
[Crossref]

Yokoyama, K.

Y. Kurosaki and K. Yokoyama, “Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules,” Chem. Phys. 493, 183–193 (2017).
[Crossref]

Yu, C.-S.

Yu, H.

H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
[Crossref] [PubMed]

Yu, S.

Zeng, H.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Zeppenfeld, M.

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

Zhang, L.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Zhang, P.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Zhang, W.

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

Zhang, W.-N.

Zhang, Z.-Y.

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

Z.-Y. Zhang and J.-M. Liu, “Quantum correlations and coherence of polar symmetric top molecules in pendular states,” Sci. Rep. 7, 17822 (2017).
[Crossref] [PubMed]

Zheng, D.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Zheng, S.-B.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
[Crossref]

Zhu, X.

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Zhu, Y.

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

Acta Phys. Sin. (1)

Y.-J. Li and J.-M. Liu, “Tripartite quantum correlations of polar molecules in pendular states,” Acta Phys. Sin. 63, 200302 (2014).

Chem. Phys. (3)

K. Mishima and K. Yamashita, “Quantum computing using rotational modes of two polar molecules,” Chem. Phys. 361, 106–117 (2009).
[Crossref]

Y. Kurosaki and K. Yokoyama, “Quantum optimal control of the isotope-selective rovibrational excitation of diatomic molecules,” Chem. Phys. 493, 183–193 (2017).
[Crossref]

A. R. Allouche, G. Wannous, and M. Aubert-Frékon, “A ligand-field approach for the low-lying states of Ca, Sr and Ba monohalides,” Chem. Phys. 170, 11–22 (1993).
[Crossref]

Chem. Phys. Lett. (1)

K. Mishima, K. Shioya, and K. Yamashita, “Generation and control of entanglement and arbitrary superposition states in molecular vibrational and rotational modes by using sequential chirped pulses,” Chem. Phys. Lett. 442, 58–64(2007).
[Crossref]

Chem. Sci. (1)

K.-K. Ni, T. Rosenband, and D. D. Grimes, “Dipolar exchange quantum logic gate with polar molecules,” Chem. Sci. 9, 6830–6838 (2018).
[Crossref] [PubMed]

ChemPhysChem (1)

Q. Wei, Y. Cao, S. Kais, B. Friedrich, and D. Herschbach, “Quantum computation using arrays of N polar molecules in pendular states,” ChemPhysChem, 17, 3714–3722 (2016).
[Crossref] [PubMed]

Int. J. Theor. Phys. (1)

R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys. 21, 467–488 (1982).
[Crossref]

J. Chem. Phys. (9)

J. A. Jones and M. Mosca, “Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer,” J. Chem. Phys. 109, 1648–1653 (1998).
[Crossref]

M. Karra, K. Sharma, B. Friedrich, S. Kais, and D. Herschbach, “Prospects for quantum computing with an array of ultracold polar paramagnetic molecules,” J. Chem. Phys. 144, 094301 (2016).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar molecules in pendular states,” J. Chem. Phys. 134, 124107 (2011).
[Crossref] [PubMed]

Q. Wei, S. Kais, B. Friedrich, and D. Herschbach, “Entanglement of polar symmetric top molecules as candidate qubits,” J. Chem. Phys. 135, 154102 (2011).
[Crossref] [PubMed]

J. Zhu, S. Kais, Q. Wei, D. Herschbach, and B. Friedrich, “Implementation of quantum logic gates using polar molecules in pendular states,” J. Chem. Phys. 138, 024104 (2013).
[Crossref] [PubMed]

L. H. Coudert, “Optimal orientation of an asymmetric top molecule with terahertz pulses,” J. Chem. Phys. 146, 024303 (2017).
[Crossref] [PubMed]

L. H. Coudert, “Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses,” J. Chem. Phys. 148, 094306 (2018).
[Crossref]

T. Halverson, D. Iouchtchenko, and P.-N. Roy, “Quantifying entanglement of rotor chains using basis truncation: Application to dipolar end of ullerene peapods,” J. Chem. Phys. 148, 074112 (2018).
[Crossref]

W. Zhu, J. Botina, and H. Rabitz, “Rapidly convergent iteration methods for quantum optimal control of population,” J. Chem. Phys. 108, 1953–1963 (1998).
[Crossref]

J. Mod. Opt. (1)

S. Franke, G. Huyet, and S. M. Barnett, “Hardy state correlations for two trapped ions,” J. Mod. Opt. 47, 145–153, (2000).
[Crossref]

Nat. Commun. (2)

K. Lin, I. Tutunnikov, J. Qiang, J. Ma, Q. Song, Q. Ji, W. Zhang, H. Li, F. Sun, X. Gong, H. Li, P. Lu, H. Zeng, Y. Prior, I. Sh. Averbukh, and J. Wu, “All-optical field-free three-dimensional orientation of asymmetric-top molecules,” Nat. Commun. 9, 5134 (2018).
[Crossref] [PubMed]

C. Song, S.-B. Zheng, P. Zhang, K. Xu, L. Zhang, Q. Guo, W. Liu, D. Xu, H. Deng, K. Huang, D. Zheng, X. Zhu, and H. Wang, “Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit,” Nat. Commun. 8, 1061 (2017).
[Crossref] [PubMed]

Nat. Phys. (1)

S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, “Molecules cooled below the Doppler limit,” Nat. Phys. 13, 1173–1176 (2017).
[Crossref]

Nature (2)

J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. DeMille, “Magneto-optical trapping of a diatomic molecule,” Nature 512, 286–289 (2014).
[Crossref] [PubMed]

B. Yan, S. A. Moses, B. Gadway, J. P. Covey, K. R. A. Hazzard, A. M. Rey, D. S. Jin, and J. Ye, “Observation of dipolar spin-exchange interactions with lattice-confined polar molecules,” Nature 501, 521–525 (2013).
[Crossref] [PubMed]

New J. Phys. (2)

F. Herrera, Y. Cao, S. Kais, and K. B. Whaley, “Infrared-dressed entanglement of cold open-shell polar molecules for universal matchgate quantum computing,” New J. Phys. 16, 075001 (2014).
[Crossref]

L. D. Carr, D. DeMille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[Crossref]

npj Quantum Inf. (1)

B.-X. Wang, M.-J. Tao, Q. Ai, T. Xin, N. Lambert, D. Ruan, Y.-C. Cheng, F. Nori, F.-G. Deng, and G.-L. Long, “Efficient quantum simulation of photosynthetic light harvesting,” npj Quantum Inf. 4, 52 (2018).
[Crossref]

Opt. Express (2)

Phys. Chem. Chem. Phys. (2)

H. Yu, T.-S. Ho, and H. Rabitz, “Optimal control of orientation and entanglement for two dipole-dipole coupled quantum planar rotors,” Phys. Chem. Chem. Phys. 20, 13008–13029 (2018).
[Crossref] [PubMed]

P. Pellegrini, S. Vranckx, and M. Desouter-Lecomte, “Implementing quantum algorithms in hyperfine levels of ultracold polar molecules by optimal control,” Phys. Chem. Chem. Phys. 13, 18864–18871 (2011).
[Crossref] [PubMed]

Phys. Rep. (1)

H. Häffner, C. F. Roos, and R. Blatt, “Quantum computing with trapped ions,” Phys. Rep. 469, 155–203 (2008).
[Crossref]

Phys. Rev. A (12)

E. R. Hudson and W. C. Campbell, “Dipolar quantum logic for freely rotating trapped molecular ions,” Phys. Rev. A 98, 040302 (2018).
[Crossref]

L. F. Wei, S. Y. Liu, and X. L. Lei, “Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit,” Phys. Rev. A 65, 062316 (2002).
[Crossref]

N. Chancellor and S. Haas, “Scalable universal holonomic quantum computation realized with an adiabatic quantum data bus and potential implementation using superconducting flux qubits,” Phys. Rev. A 87, 042321 (2013).
[Crossref]

Z. S. Wang, G. Q. Liu, and Y. H. Ji, “Noncyclic geometric quantum computation in a nuclear-magnetic-resonance system,” Phys. Rev. A 79, 054301 (2009).
[Crossref]

D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998).
[Crossref]

S. F. Yelin, K. Kirby, and R. Côté, “Schemes for robust quantum computation with polar molecules,” Phys. Rev. A 74, 050301 (2006).
[Crossref]

Y.-Y. Liao, “Anticrossing-mediated entanglement of adsorbed polar molecules,” Phys. Rev. A 85, 023415 (2012).
[Crossref]

M. Vatasescu, “Entanglement between electronic and vibrational degrees of freedom in a laser-driven molecular system,” Phys. Rev. A 88, 063415 (2013).
[Crossref]

A. Datta and G. Vidal, “Role of entanglement and correlations in mixed-state quantum computation,” Phys. Rev. A 75, 042310 (2007).
[Crossref]

Y. Chou, S.-Y. Huang, and H.-S. Goan, “Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond,” Phys. Rev. A 91, 052315 (2015).
[Crossref]

C. M. Rivera-Ruiz, E. F. de Lima, F. F. Fanchini, V. Lopez-Richard, and L. K. Castelano, “Optimal control of hybrid qubits: Implementing the quantum permutation algorithm,” Phys. Rev. A 97, 032332 (2018).
[Crossref]

L. Bomble, P. Pellegrini, P. Ghesquière, and M. Desouter-Lecomte, “Toward scalable information processing with ultracold polar molecules in an electric field: A numerical investigation,” Phys. Rev. A 82, 062323 (2010).
[Crossref]

Phys. Rev. Lett. (13)

L. Hardy, “Nonlocality for two particles without inequalities for almost all entangled states,” Phys. Rev. Lett. 71, 1665–1668 (1993).
[Crossref] [PubMed]

B. Neyenhuis, B. Yan, S. A. Moses, J. P. Covey, A. Chotia, A. Petrov, S. Kotochigova, J. Ye, and D. S. Jin, “Anisotropic polarizability of ultracold polar  40K87Rb molecules,” Phys. Rev. Lett. 109, 230403 (2012).
[Crossref]

J. Lim, J. R. Almond, M. A. Trigatzis, J. A. Devlin, N. J. Fitch, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Laser cooled YbF molecules for measuring the electron’s electric dipole moment,” Phys. Rev. Lett. 120, 123201 (2018).
[Crossref]

A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S. M. Weber, and L. Wöste, “Isotope selective ionization by optimal control using shaped femtosecond laser pulses,” Phys. Rev. Lett. 93, 033001 (2004).
[Crossref] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[Crossref]

T. Baumgratz, M. Cramer, and M. B. Plenio, “Quantifying coherence,” Phys. Rev. Lett. 113, 140401 (2014).
[Crossref] [PubMed]

F. Seeßelberg, X.-Y. Luo, M. Li, R. Bause, S. Kotochigova, I. Bloch, and C. Gohle, “Extending rotational coherence of interacting polar molecules in a spin-decoupled magic trap,” Phys. Rev. Lett. 121, 253401 (2018).
[Crossref]

L.-M. Duan and G-C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997).
[Crossref]

W. Dür and H.-J. Briegel, “Entanglement purification for quantum computation,” Phys. Rev. Lett. 90, 067901 (2003).
[Crossref] [PubMed]

A. Prehn, M. Ibrügger, R. Glöckner, G. Rempe, and M. Zeppenfeld, “Optoelectrical cooling of polar molecules to submillikelvin temperatures,” Phys. Rev. Lett. 116, 063005 (2016).
[Crossref] [PubMed]

D. J. McCarron, M. H. Steinecker, Y. Zhu, and D. DeMille, “Magnetic Trapping of an Ultracold Gas of Polar Molecules,” Phys. Rev. Lett. 121, 013202 (2018).
[Crossref] [PubMed]

L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Phys. Rev. Lett. 79, 325–328 (1997).
[Crossref]

D. DeMille, “Quantum computation with trapped polar molecules,” Phys. Rev. Lett. 88, 067901 (2002).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

O. Dulieu and C. Gabbanini, “The formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics,” Rep. Prog. Phys. 72, 086401 (2009).
[Crossref]

RSC Adv. (1)

Z.-Y. Zhang, D. Wei, Z. Hu, and J.-M. Liu, “EPR steering of polar molecules in pendular states and their dynamics under intrinsic decoherence,” RSC Adv. 8, 35928–35935 (2018).
[Crossref]

Sci. Rep. (2)

B.-C. Ren and F.-G. Deng, “Hyper-parallel photonic quantum computation with coupled quantum dots,” Sci. Rep. 4, 4623 (2014).
[Crossref] [PubMed]

Z.-Y. Zhang and J.-M. Liu, “Quantum correlations and coherence of polar symmetric top molecules in pendular states,” Sci. Rep. 7, 17822 (2017).
[Crossref] [PubMed]

SIAM J. Comput. (1)

P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Comput. 26, 1484–1509 (1997).
[Crossref]

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optimization results for the transition of | 00 1 / 2 ( | 00 + | 11 ). (a) Concurrence, REC, and fidelity as a function of iteration numbers, (b) converged laser pulse versus the last iteration, (c) fourier transform of the optimized laser pulse, (d) population evolution driven by the optimized laser pulse.
Fig. 2
Fig. 2 Optimization results for the transition of | 00 1 / 2 ( | 01 + | 10 ). (a) Concurrence, REC, and fidelity as a function of iteration numbers, (b) converged laser pulse versus the last iteration, (c) fourier transform of the optimized laser pulse, (d) population evolution driven by the optimized laser pulse.
Fig. 3
Fig. 3 Optimization results for the transition of | 00 1 / 2 ( | 00 + | 01 | 10 + | 11 ). (a) REC, concurrence, and fidelity as a function of iteration numbers, (b) converged laser pulse versus the last iteration, (c) fourier transform of the optimized laser pulse, (d) population evolution driven by the optimized laser pulse.
Fig. 4
Fig. 4 Optimization results for the transition of 1 / 2 ( | 00 + | 11 ) 1 / 2 ( | 00 + | 01 + | 10 + | 11 ). (a) REC, concurrence, and fidelity as a function of iteration numbers, (b) converged laser pulse after the optimization, (c) fourier transform of the optimized laser pulse, (d) population evolution driven by the optimized laser pulse.
Fig. 5
Fig. 5 Optimization results for the transition of | 00 ( 5 2 | 00 + ( 3 5 ) / 2 | 10 + ( 3 5 ) / 2 | 01 ). (a) Fidelity and concurrence as a function of iteration numbers, (b) converged laser pulse after the optimization, (c) fourier transform of the optimized laser pulse, (d) population evolution driven by the optimized laser pulse.

Tables (1)

Tables Icon

Table 1 Energy gaps and transition frequencies ωj between different energy levels Λj of two coupled BaI molecules.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

H i = B J 2 μ ϵ cos  θ .
| 0 = j a j Y j , 0 ( θ , ϕ ) , | 1 = j b j Y j , 0 ( θ , ϕ ) ,
V d d = Ω ( 1 3 cos 2 α ) cos  θ 1 cos  θ 2 .
H = H 1 + H 2 + V d d .
H 1 = ( λ 0 1 0 0 λ 1 1 ) I , H 2 = I ( λ 0 2 0 0 λ 1 2 ) , V d d = Ω ( 1 3 cos 2 α ) ( C 0 1 C t 1 C t 1 C 1 1 ) ( C 0 2 C t 2 C t 2 C 1 2 ) .
C = max  { 0 , Γ 1 Γ 2 Γ 3 Γ 4 } ,
M = ρ ( σ y σ y ) ρ * ( σ y σ y ) .
R = min  δ N S ( ρ δ ) = S ( ρ d i a g ) S ( ρ ) ,
J f i = | ψ i ( T ) | ϕ f ( T ) | 2 α 0 × 0 T [ E ( t ) ] 2 S ( t ) d t 2 Re { ψ i ( T ) | ϕ f ( T ) × 0 T ψ f ( t ) | t + i [ H μ E ( t ) ] | ψ i ( t ) d t } .
i t ψ i ( t ) = [ H μ E ( t ) ] ψ i ( t ) , ψ i ( 0 ) = φ i ( 0 ) , i t ψ f ( t ) = [ H μ E ( t ) ] ψ f ( t ) , ψ f ( T ) = ϕ f ( T ) ,
E ( t ) = μ S ( t ) α 0 I m { ψ i ( t ) | ψ f ( t ) ψ f ( t ) | Θ | ψ i ( t ) } ,
P = | α β γ | 2 ( | α | 2 + | β | 2 ) ( | α | 2 + | γ | 2 ) .

Metrics