Abstract

Electrically tuneable, guided self-assembly of plasmonic nanoparticles (NPs) at polarized, patterned solid–liquid interfaces could enable numerous platforms for designing nanoplasmonic optical devices with new tuneable functionalities. Here, we propose a unique design of voltage-controlled guided 3D self-assembly of plasmonic NPs on transparent electrodes, patterned as columnar structures—arrays of vertical nanorods. NP assembly on the electrified surfaces of those columnar structures allows formation of a 3D superstructure of NPs, comprising stacking up of NPs in the voids between the columns, forming multiple NP-layers. A comprehensive theoretical model, based on quasi-static effective medium theory and multilayer Fresnel reflection scheme, is developed and verified against full-wave simulations for obtaining optical responses—reflectance, transmittance, and absorbance—from such systems of 3D self-assembled NPs. With a specific example of small gold nanospheres self-assembling on polarized zinc oxide columns, we show that the reflectance spectrum can be controlled by the number of stacked NP-layers. Numerical simulations show that peak reflectance can be enhanced up to ∼1.7 times, along with spectral broadening by a factor of ∼2—allowing wide-range tuning of optical reflectivity. Smaller NPs with superior mobility would be preferable over large NPs for realizing such devices for novel photonic and sensing applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

9 September 2019: A typographical correction was made to the author affiliations.


OSA Recommended Articles
Toward the highly sensitive SERS detection of bio-molecules: the formation of a 3D self-assembled structure with a uniform GO mesh between Ag nanoparticles and Au nanoparticles

Xu Gao, Hao Zhang, Xiangyu Fan, Chao Zhang, Yang Sun, Chundong Liu, Zhen Li, Shouzhen Jiang, Baoyuan Man, and Cheng Yang
Opt. Express 27(18) 25091-25106 (2019)

Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes

Fei Yi, Fang Ou, Boyang Liu, Yingyan Huang, Seng-Tiong Ho, Yiliang Wang, Jun Liu, Tobin J. Marks, Su Huang, Jingdong Luo, Alex K.-Y. Jen, Raluca Dinu, and Dan Jin
Opt. Express 18(7) 6779-6796 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull. 25(8), 15–18 (2000).
    [Crossref]
  2. T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
    [Crossref]
  3. Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
    [Crossref]
  4. W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004).
    [Crossref]
  5. G. Xu, Z. Liu, J. Ma, B. Liu, S.-T. Ho, L. Wang, P. Zhu, T. J. Marks, J. Luo, and A. K. Y. Jen, “Organic electro-optic modulator using transparent conducting oxides as electrodes,” Opt. Express 13(19), 7380 (2005).
    [Crossref]
  6. Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
    [Crossref]
  7. Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
    [Crossref]
  8. L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
    [Crossref]
  9. L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
    [Crossref]
  10. D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.
  11. Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
    [Crossref]
  12. H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
    [Crossref]
  13. H. Huang and X. Yang, “Chitosan mediated assembly of gold nanoparticles multilayer,” Colloids Surf., A 226(1-3), 77–86 (2003).
    [Crossref]
  14. A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
    [Crossref]
  15. Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
    [Crossref]
  16. P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
    [Crossref]
  17. A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
    [Crossref]
  18. P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
    [Crossref]
  19. Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
    [Crossref]
  20. V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
    [Crossref]
  21. T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
    [Crossref]
  22. M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
    [Crossref]
  23. J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
    [Crossref]
  24. J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
    [Crossref]
  25. Y. H. Ko and J. S. Yu, “Design of hemi-urchin shaped ZnO nanostructures for broadband and wide-angle antireflection coatings,” Opt. Express 19(1), 297 (2011).
    [Crossref]
  26. N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857 (2012).
    [Crossref]
  27. Y. L. Chen, C. L. Chen, H. Y. Lin, C. W. Chen, Y. F. Chen, Y. Hung, and C. Y. Mou, “Enhancement of random lasing based on the composite consisting of nanospheres embedded in nanorods template,” Opt. Express 17(15), 12706 (2009).
    [Crossref]
  28. J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
    [Crossref]
  29. J. Huang and Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures,” Sensors 9(12), 9903–9924 (2009).
    [Crossref]
  30. Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404 (2012).
    [Crossref]
  31. T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
    [Crossref]
  32. A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
    [Crossref]
  33. A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
    [Crossref]
  34. D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
    [Crossref]
  35. D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
    [Crossref]
  36. D. Sikdar and A. A. Kornyshev, “Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces,” Sci. Rep. 6(1), 33712 (2016).
    [Crossref]
  37. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
    [Crossref]
  38. M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
    [Crossref]
  39. K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
    [Crossref]
  40. D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
    [Crossref]
  41. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).
  42. S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics (Springer, 2012).
  43. G. A. Niklasson, C. G. Granqvist, and O. Hunderi, “Effective medium models for the optical properties of inhomogeneous materials,” Appl. Opt. 20(1), 26 (1981).
    [Crossref]
  44. J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
    [Crossref]
  45. C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
    [Crossref]
  46. A. A. Kornyshev, “The simplest model of charge storage in single file metallic nanopores,” Faraday Discuss. 164, 117 (2013).
    [Crossref]
  47. A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
    [Crossref]
  48. Y. Cai and K.-D. Xu, “Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure,” Opt. Express 26(24), 31693 (2018).
    [Crossref]
  49. R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443 (2018).
    [Crossref]

2019 (1)

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

2018 (4)

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Cai and K.-D. Xu, “Tunable broadband terahertz absorber based on multilayer graphene-sandwiched plasmonic structure,” Opt. Express 26(24), 31693 (2018).
[Crossref]

R. Kowerdziej, M. Olifierczuk, and J. Parka, “Thermally induced tunability of a terahertz metamaterial by using a specially designed nematic liquid crystal mixture,” Opt. Express 26(3), 2443 (2018).
[Crossref]

2017 (4)

A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

2016 (4)

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

D. Sikdar and A. A. Kornyshev, “Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces,” Sci. Rep. 6(1), 33712 (2016).
[Crossref]

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

2015 (4)

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

2014 (3)

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

2013 (6)

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

A. A. Kornyshev, “The simplest model of charge storage in single file metallic nanopores,” Faraday Discuss. 164, 117 (2013).
[Crossref]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
[Crossref]

2012 (4)

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

N. Xu, Y. Cui, Z. Hu, W. Yu, J. Sun, N. Xu, and J. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857 (2012).
[Crossref]

Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404 (2012).
[Crossref]

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref]

2011 (1)

2010 (2)

Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
[Crossref]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

2009 (4)

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Y. L. Chen, C. L. Chen, H. Y. Lin, C. W. Chen, Y. F. Chen, Y. Hung, and C. Y. Mou, “Enhancement of random lasing based on the composite consisting of nanospheres embedded in nanorods template,” Opt. Express 17(15), 12706 (2009).
[Crossref]

J. Huang and Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures,” Sensors 9(12), 9903–9924 (2009).
[Crossref]

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

2008 (1)

P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
[Crossref]

2005 (2)

2004 (1)

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004).
[Crossref]

2003 (2)

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

H. Huang and X. Yang, “Chitosan mediated assembly of gold nanoparticles multilayer,” Colloids Surf., A 226(1-3), 77–86 (2003).
[Crossref]

2000 (1)

D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull. 25(8), 15–18 (2000).
[Crossref]

1984 (1)

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

1981 (1)

Baik, J. M.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Boltasseva, A.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Bonod, N.

S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics (Springer, 2012).

Bove, P.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Bright, C.

D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull. 25(8), 15–18 (2000).
[Crossref]

Bucher, A.

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

Cai, G.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Cai, J.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Cai, L.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Cai, Y.

Cao, G.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Carbó-Argibay, E.

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Chen, C. L.

Chen, C. W.

Chen, H.

Chen, M.-C.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Chen, Y. F.

Chen, Y. L.

Cheng, W.

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
[Crossref]

Choi, W. J.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Chu, P. K.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Chueh, Y.-L.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Cui, Y.

Davis, T. J.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Dickinson, C.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref]

Dutta, A.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Edel, J.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Edel, J. B.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

Enoch, S.

S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics (Springer, 2012).

Fedosyuk, A.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Funston, A. M.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Gao, R.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Ginley, D. S.

D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull. 25(8), 15–18 (2000).
[Crossref]

Gomez, D. E.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Granqvist, C. G.

Guerrero-Martínez, A.

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Guo, L.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Halas, N. J.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

Harn, Y.-W.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Hasan, S. B.

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

Heo, J.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Ho, S.-T.

Hofstetter, D.

Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
[Crossref]

Hu, Y.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Hu, Z.

Huang, H.

H. Huang and X. Yang, “Chitosan mediated assembly of gold nanoparticles multilayer,” Colloids Surf., A 226(1-3), 77–86 (2003).
[Crossref]

Huang, J.

J. Huang and Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures,” Sensors 9(12), 9903–9924 (2009).
[Crossref]

Huang, L.-D.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Hunderi, O.

Hung, Y.

Huskens, J.

P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
[Crossref]

Imai, H.

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

Jen, A. K. Y.

Jeong, H. Y.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Kageyama, H.

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

Kildishev, A. V.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Kim, A.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Kim, C.-H.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Kim, D.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Kim, J.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Kim, J. K.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Kim, M. H.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Klemme, D. J.

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Knight, M. W.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

Ko, Y. H.

Kolomeisky, A. B.

A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
[Crossref]

Konishi, H.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Kornyshev, A.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Kornyshev, A. A.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
[Crossref]

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

D. Sikdar and A. A. Kornyshev, “Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces,” Sci. Rep. 6(1), 33712 (2016).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

A. A. Kornyshev, “The simplest model of charge storage in single file metallic nanopores,” Faraday Discuss. 164, 117 (2013).
[Crossref]

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

Kowerdziej, R.

Kucernak, A. R.

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

Lassiter, J. B.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

Lee, A. A.

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

Lee, J. W.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Lei, H.

Li, B.

Li, P.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Li, Y.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Liang, Z.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Lin, C.-C.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Lin, H. Y.

Liu, B.

Liu, J.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Liu, Y.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Y. Liu, Y. Zhang, H. Lei, J. Song, H. Chen, and B. Li, “Growth of well-arrayed ZnO nanorods on thinned silica fiber and application for humidity sensing,” Opt. Express 20(17), 19404 (2012).
[Crossref]

Liu, Z.

Liz-Marzán, L. M.

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Luo, J.

Ma, J.

Ma, Y.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

Marinescu, M.

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

Marks, T. J.

Maury, P.

P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
[Crossref]

Mcdermott, M. J.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

McIntosh, A. J. S.

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

Mckenzie, B.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Memarzadeh, B.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Minami, T.

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

Montelongo, Y.

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

Moon, J.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Morkoç, H.

Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
[Crossref]

Mosallaei, H.

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Mou, C. Y.

Mulvaney, P.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Nakagawa, Y.

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

Nanto, H.

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

Niklasson, G. A.

Nordlander, P.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

Novo, C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Oaki, Y.

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

Oh, S.-H.

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Olifierczuk, M.

Özgür, Ü

Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
[Crossref]

Paget, J.

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

Pan, M.-Y.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Park, W. I.

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004).
[Crossref]

Parka, J.

Pérez-Juste, J.

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Premaratne, M.

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
[Crossref]

Pruessner, G.

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

Qi, L.

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

Qu, X.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Razeghi, M.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Reinhoudt, D.

P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
[Crossref]

Ren, F.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Rochester, C. C.

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

Rodriguez, M. A.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Rogers, D. J.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Roser, S. J.

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

Rukhlenko, I. D.

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
[Crossref]

Ryan, K. M.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref]

Sandana, V. E.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Scarabelli, L.

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

Shen, S.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Shooji, S.

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

Sikdar, D.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

D. Sikdar and A. A. Kornyshev, “Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces,” Sci. Rep. 6(1), 33712 (2016).
[Crossref]

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Effect of number density on optimal design of gold nanoshells for plasmonic photothermal therapy,” Biomed. Opt. Express 4(1), 15–31 (2013).
[Crossref]

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

Singh, A.

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref]

Song, J.

Sun, J.

Takata, S.

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

Tang, L.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Tang, S.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Tardajos, G.

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Teherani, F. H.

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Tian, J.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Tian, Z. R.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Turek, V. A.

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

Twidale, R. M.

A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
[Crossref]

Uchaker, E.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Urbakh, M.

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

Velleman, L.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

Vernon, K. C.

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Voigt, J. A.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Wan, Q.

J. Huang and Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures,” Sensors 9(12), 9903–9924 (2009).
[Crossref]

Wang, D.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Wang, H.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Wang, L.

Wang, M.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Wei, P.-K.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Weir, H.

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

Won, Y.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Woo, K.

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

Wu, J.

Wu, J.-M.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Wu, Y.

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

Wu, Z.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Xiao, Q.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Xiao, S.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Xu, G.

Xu, H.

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Xu, K.-D.

Xu, N.

Yang, T.-H.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Yang, X.

H. Huang and X. Yang, “Chitosan mediated assembly of gold nanoparticles multilayer,” Colloids Surf., A 226(1-3), 77–86 (2003).
[Crossref]

Ye, B. U.

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

Yen, W.-C.

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

Yi, G.-C.

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004).
[Crossref]

Yu, J. S.

Yu, W.

Yu, X.-F.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Zagar, C.

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

Zhang, Q.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Zhang, S.

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

Zhang, Y.

Zhao, M.

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

Zhao, Y.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Zhou, J.

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

Zhou, Z.-K.

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Zhu, P.

ACS Appl. Mater. Interfaces (2)

Y. Ma, D. Sikdar, A. Fedosyuk, L. Velleman, M. Zhao, L. Tang, A. Kornyshev, and J. Edel, “An auxetic thermo-responsive nanoplasmonic optical switch,” ACS Appl. Mater. Interfaces 11(25), 22754–22760 (2019)..
[Crossref]

J. W. Lee, B. U. Ye, D. Kim, J. K. Kim, J. Heo, H. Y. Jeong, M. H. Kim, W. J. Choi, and J. M. Baik, “ZnO Nanowire-Based Antireflective Coatings with Double-Nanotextured Surfaces,” ACS Appl. Mater. Interfaces 6(3), 1375–1379 (2014).
[Crossref]

ACS Nano (2)

A. Singh, C. Dickinson, and K. M. Ryan, “Insight into the 3D Architecture and Quasicrystal Symmetry of Multilayer Nanorod Assemblies from Moiré Interference Patterns,” ACS Nano 6(4), 3339–3345 (2012).
[Crossref]

A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, “Highly Transparent Low Resistance ZnO/Ag Nanowire/ZnO Composite Electrode for Thin Film Solar Cells,” ACS Nano 7(2), 1081–1091 (2013).
[Crossref]

ACS Photonics (2)

Y. Ma, C. Zagar, D. J. Klemme, D. Sikdar, L. Velleman, Y. Montelongo, S.-H. Oh, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “A Tunable Nanoplasmonic Mirror at an Electrochemical Interface,” ACS Photonics 5(11), 4604–4616 (2018).
[Crossref]

J. Kim, A. Dutta, B. Memarzadeh, A. V. Kildishev, H. Mosallaei, and A. Boltasseva, “Zinc Oxide Based Plasmonic Multilayer Resonator: Localized and Gap Surface Plasmon in the Infrared,” ACS Photonics 2(8), 1224–1230 (2015).
[Crossref]

Adv. Mater. (2)

W. I. Park and G.-C. Yi, “Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN,” Adv. Mater. 16(1), 87–90 (2004).
[Crossref]

P. Li, Y. Li, Z.-K. Zhou, S. Tang, X.-F. Yu, S. Xiao, Z. Wu, Q. Xiao, Y. Zhao, H. Wang, and P. K. Chu, “Evaporative Self-Assembly of Gold Nanorods into Macroscopic 3D Plasmonic Superlattice Arrays,” Adv. Mater. 28(13), 2511–2517 (2016).
[Crossref]

Angew. Chem., Int. Ed. (1)

A. Guerrero-Martínez, J. Pérez-Juste, E. Carbó-Argibay, G. Tardajos, and L. M. Liz-Marzán, “Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices,” Angew. Chem., Int. Ed. 48(50), 9484–9488 (2009).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

ChemPhysChem (1)

C. C. Rochester, A. A. Lee, G. Pruessner, and A. A. Kornyshev, “Interionic Interactions in Conducting Nanoconfinement,” ChemPhysChem 14(18), 4121–4125 (2013).
[Crossref]

Colloids Surf., A (1)

H. Huang and X. Yang, “Chitosan mediated assembly of gold nanoparticles multilayer,” Colloids Surf., A 226(1-3), 77–86 (2003).
[Crossref]

Curr. Opin. Colloid Interface Sci. (1)

P. Maury, D. Reinhoudt, and J. Huskens, “Assembly of nanoparticles on patterned surfaces by noncovalent interactions,” Curr. Opin. Colloid Interface Sci. 13(1–2), 74–80 (2008).
[Crossref]

Faraday Discuss. (3)

L. Velleman, L. Scarabelli, D. Sikdar, A. A. Kornyshev, L. M. Liz-Marzán, and J. B. Edel, “Monitoring plasmon coupling and SERS enhancement through in situ nanoparticle spacing modulation,” Faraday Discuss. 205, 67–83 (2017).
[Crossref]

A. A. Kornyshev, “The simplest model of charge storage in single file metallic nanopores,” Faraday Discuss. 164, 117 (2013).
[Crossref]

D. Sikdar, A. Bucher, C. Zagar, and A. A. Kornyshev, “Electrochemical plasmonic metamaterials: towards fast electro-tuneable reflecting nanoshutters,” Faraday Discuss. 199, 585–602 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Nakagawa, H. Kageyama, Y. Oaki, and H. Imai, “Direction Control of Oriented Self-Assembly for 1D, 2D, and 3D Microarrays of Anisotropic Rectangular Nanoblocks,” J. Am. Chem. Soc. 136(10), 3716–3719 (2014).
[Crossref]

J. Catal. (1)

T.-H. Yang, Y.-W. Harn, L.-D. Huang, M.-Y. Pan, W.-C. Yen, M.-C. Chen, C.-C. Lin, P.-K. Wei, Y.-L. Chueh, and J.-M. Wu, “Fully integrated Ag nanoparticles/ZnO nanorods/graphene heterostructured photocatalysts for efficient conversion of solar to chemical energy,” J. Catal. 329, 167–176 (2015).
[Crossref]

J. Mater. Chem. A (1)

J. Tian, Q. Zhang, E. Uchaker, Z. Liang, R. Gao, X. Qu, S. Zhang, and G. Cao, “Constructing ZnO nanorod array photoelectrodes for highly efficient quantum dot sensitized solar cells,” J. Mater. Chem. A 1(23), 6770 (2013).
[Crossref]

J. Phys. Chem. C (1)

A. A. Kornyshev, R. M. Twidale, and A. B. Kolomeisky, “Current-Generating Double-Layer Shoe with a Porous Sole: Ion Transport Matters,” J. Phys. Chem. C 121(14), 7584–7595 (2017).
[Crossref]

Mater. Horiz. (1)

J. Cai and L. Qi, “Recent advances in antireflective surfaces based on nanostructure arrays,” Mater. Horiz. 2(1), 37–53 (2015).
[Crossref]

MRS Bull. (1)

D. S. Ginley and C. Bright, “Transparent Conducting Oxides,” MRS Bull. 25(8), 15–18 (2000).
[Crossref]

Nano Lett. (2)

M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Substrates matter: Influence of an adjacent dielectric on an individual plasmonic nanoparticle,” Nano Lett. 9(5), 2188–2192 (2009).
[Crossref]

K. C. Vernon, A. M. Funston, C. Novo, D. E. Gomez, P. Mulvaney, and T. J. Davis, “Influence of Particle–Substrate Interaction on Localized Plasmon Resonances,” Nano Lett. 10(6), 2080–2086 (2010).
[Crossref]

Nanoscale (1)

L. Velleman, D. Sikdar, V. A. Turek, A. R. Kucernak, S. J. Roser, A. A. Kornyshev, and J. B. Edel, “Tuneable 2D self-assembly of plasmonic nanoparticles at liquid|liquid interfaces,” Nanoscale 8(46), 19229–19241 (2016).
[Crossref]

Nat. Mater. (2)

Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Electrotunable nanoplasmonic liquid mirror,” Nat. Mater. 16(11), 1127–1135 (2017).
[Crossref]

Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, and H. Xu, “Complex and oriented ZnO nanostructures,” Nat. Mater. 2(12), 821–826 (2003).
[Crossref]

Opt. Express (7)

Phys. Chem. Chem. Phys. (2)

D. Sikdar, S. B. Hasan, M. Urbakh, J. B. Edel, and A. A. Kornyshev, “Unravelling the optical responses of nanoplasmonic mirror-on-mirror metamaterials,” Phys. Chem. Chem. Phys. 18(30), 20486–20498 (2016).
[Crossref]

A. A. Kornyshev, M. Marinescu, J. Paget, and M. Urbakh, “Reflection of light by metal nanoparticles at electrodes,” Phys. Chem. Chem. Phys. 14(6), 1850 (2012).
[Crossref]

Plasmonics (1)

D. Sikdar, I. D. Rukhlenko, W. Cheng, and M. Premaratne, “Tunable Broadband Optical Responses of Substrate-Supported Metal/Dielectric/Metal Nanospheres,” Plasmonics 9(3), 659–672 (2014).
[Crossref]

Proc. IEEE (1)

Ü Özgür, D. Hofstetter, and H. Morkoç, “ZnO Devices and Applications: A Review of Current Status and Future Prospects,” Proc. IEEE 98(7), 1255–1268 (2010).
[Crossref]

Proc. SPIE (1)

V. E. Sandana, D. J. Rogers, F. H. Teherani, P. Bove, and M. Razeghi, “Graphene versus oxides for transparent electrode applications,” Proc. SPIE 8626, 862603 (2013).
[Crossref]

Sci. Rep. (3)

H. Weir, J. B. Edel, A. A. Kornyshev, and D. Sikdar, “Towards Electrotuneable Nanoplasmonic Fabry–Perot Interferometer,” Sci. Rep. 8(1), 565 (2018).
[Crossref]

M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, D. Wang, Y. Liu, L. Guo, and S. Shen, “N Doping to ZnO Nanorods for Photoelectrochemical Water Splitting under Visible Light: Engineered Impurity Distribution and Terraced Band Structure,” Sci. Rep. 5(1), 12925 (2015).
[Crossref]

D. Sikdar and A. A. Kornyshev, “Theory of tailorable optical response of two-dimensional arrays of plasmonic nanoparticles at dielectric interfaces,” Sci. Rep. 6(1), 33712 (2016).
[Crossref]

Semicond. Sci. Technol. (1)

T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes,” Semicond. Sci. Technol. 20(4), S35–S44 (2005).
[Crossref]

Sensors (1)

J. Huang and Q. Wan, “Gas Sensors Based on Semiconducting Metal Oxide One-Dimensional Nanostructures,” Sensors 9(12), 9903–9924 (2009).
[Crossref]

Thin Solid Films (1)

T. Minami, H. Nanto, S. Shooji, and S. Takata, “The stability of zinc oxide transparent electrodes fabricated by R.F. magnetron sputtering,” Thin Solid Films 111(2), 167–174 (1984).
[Crossref]

Other (3)

D. Sikdar, Y. Ma, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, “Nanoplasmonic Metamaterial Devices as Electrically Switchable Perfect Mirrors and Perfect Absorbers,” in Conference on Lasers and Electro-Optics (OSA, 2019), p. FM3C.5.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).

S. Enoch and N. Bonod, Plasmonics: From Basics to Advanced Topics (Springer, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Voltage-guided 3D assembly/disassembly of negatively charged NPs into/from columnar-structured TCO electrodes in electrolytic solution. (a) ‘mirror’ state, with NP stacks assembled in the intercolumnar voids of positively charged electrodes which, as we show below, strongly reflect incident light; (b) ‘window’ state, with NPs repelled away to disperse in the bulk of the solution from negatively charged electrodes, allowing incident light to pass through.
Fig. 2.
Fig. 2. Modelling of two layers of assembled NPs at a solid–liquid interface using a six-layer stack model. (a) Original structure and (b) equivalent theoretical model. Variables — h : distance of the central plane of the first layer of NPs from the interface, R : NP radius, a : lattice constant, k : wave vector of the incoming light with incident angle, $\theta $ , d : thickness of the pseudo-NP layer and L : inter-NP layer separation. The bottom panels show the mapping of ‘L-parameters’ between the original system and the equivalent model, where surface-to-surface (S2S) separation between NP-layers is adjusted while the center-to-center (C2C) distance remains the same
Fig. 3.
Fig. 3. Generalised multilayer Fresnel scheme for modelling N-layers of assembled NPs at a solid–liquid interface. (a) Original system and (b) adapted theoretical model with the labels for each layer. The labels are ‘TCE’ (transparent conductive-oxide electrode); ‘med,h’ (surrounding medium, between the final NP layer and the TCE); NPfilm, N’ (final NP layer, which includes dipolar image interaction with the TCE); ‘med’ (surrounding medium between each NP layer); ‘NPfilm’ (pseudo-NP films with no image charges); and ‘med,1’ (surrounding medium above the NP stacks).
Fig. 4.
Fig. 4. Schematics of NP-assembly around ZnO nanorod array. (a) 3D view and (b) cross sectional view of ZnO nanorod arrays supporting assembly of NPs (each capped with ligands of length l) in the gaps around the nanorods to form a stack of monolayers with NPs assembled in a square lattice in each of those. Note: NP-capping ligands are not explicitly shown in (a), however in (b) the thickness of the layer of ligands around each NP is depicted, which will be later useful for calculation. Note: the nanorod array is typically grown on top of a substrate, which is not explicitly shown here.
Fig. 5.
Fig. 5. Comparison of theoretical, T, (solid) reflectance spectra with those obtained from full-wave simulation, S, (dashed) for different numbers of NP-layers. Parameters: NPs of radius, (a) R = 6 nm and (b) R = 10 nm, ${\varepsilon _{\textrm{TCE}}} = 3$ ; ${\varepsilon _{\textrm{med}}} = $ 1.78; g = 4 nm.
Fig. 6.
Fig. 6. Maximum reflectance of the system with the different numbers of NP layers, for NPs of three sets of different radius: R = 5 nm (triangles), R = 8 nm (circles), and R = 12 nm (crosses).
Fig. 7.
Fig. 7. Effect of number of NP layers assembled in the voids of the ZnO columnar electrode structure on the reflectance spectrum, shown for different NP radii: R = 5 nm (a), 8 nm (b), R = 12 nm (c).
Fig. 8.
Fig. 8. Normalized electric (E) field distribution patterns shown for 1 NP-layer and 3 NP-layers assembled in the voids between the transparent columnar electrodes (see Fig. 4), obtained for different NP radii: R = 5 nm (a), 8 nm (b), R = 12 nm (c). All E- field patterns are shown for a unit cell (shown in a perspective view with 3 NP-layers stacked around a columnar electrode grown on a substrate — see the red dashed box), which is repeated periodically in xy –plane, to emulate the characteristics of the proposed structure. Incident light propagates along –z axis with polarization along x-direction. In each layer, NPs are arranged in a square lattice. E-field patterns are obtained from top- and side views at the wavelength of the single peak (abbreviated here as ‘S’) for 1 NP-layer, and at the wavelengths of high-energy peak (‘Hi’) and low-energy peak (‘Lo’) for 3 NP-layers stack [all peak positions extracted from Fig. 7]. Top-view plots are calculated along an xy plane passing through the centres of the NPs in the top layer. Side-view plots are along an xz plane passing through the centres of the NPs. Following parameters are used in simulation: ${\varepsilon _{\textrm{TCE}}} = 3$ ; ${\varepsilon _{\textrm{med}}} = $ 1.78; g = 4 nm; LNP = 4 nm and l = 1 nm.

Equations (48)

Equations on this page are rendered with MathJax. Learn more.

β 2 ( ω ) = α ( ω ) 1 α ( ω ) 1 ε 3 U A 2 a 3 ,
β 2 ( ω ) = α ( ω ) 1 + α ( ω ) 1 ε 3 U A a 3 ,
β 4 ( ω ) = α ( ω ) 1 α ( ω ) 1 ε 5 [ U A 2 a 3 + ξ ( ω ) ( f ( h , a ) a 3 3 2 g 1 ( h , a ) a 3 + 1 8 h 3 ) ] ,
β 4 ( ω ) = α ( ω ) 1 + α ( ω ) 1 ε 5 [ U A a 3 ξ ( ω ) ( f ( h , a ) a 3 12 h 2 g 2 ( h , a ) a 5 1 4 h 3 ) ] ,
ε 2 , 4 ( ω ) = ε 3 , 5 + 4 π a 2 d β 2 , 4 ( ω ) ,
1 ε 2 , 4 ( ω ) = 1 ε 3 , 5 1 ε 3.5 2 4 π a 2 d β 2 , 4 ( ω ) .
α ( ω ) = ε med R 3 ε NP ( ω ) ε med ε NP ( ω ) + 2 ε med ,
ε NPfilm ( ω ) = ε med + 4 π a 2 d β n ( ω ) ,
1 ε NPfilm ( ω ) = 1 ε med 1 ε med 2 4 π a 2 d β n ( ω ) ,
β n ( ω ) = α ( ω ) 1 α ( ω ) 1 ε med U A 2 a 3 ,
β n ( ω ) = α ( ω ) 1 + α ( ω ) 1 ε med U A a 3 ,
β N ( ω ) = α ( ω ) 1 α ( ω ) 1 ε med [ U A 2 a 3 + ξ ( ω ) ( f ( h , a ) a 3 3 2 g 1 ( h , a ) a 3 + 1 8 h 3 ) ] ,
β N ( ω ) = α ( ω ) 1 + α ( ω ) 1 ε med [ U A a 3 ξ ( ω ) ( f ( h , a ) a 3 12 h 2 g 2 ( h , a ) a 5 1 4 h 3 ) ] ,
a ZnO = 2 ( R ZnO + R NP + l )
a NP = 2 ( R ZnO + R NP + l ) .
g NP = a NP 2 R NP + l .
φ ZnO = 2 π R ZnO 2 ( R NP + l + 2 R ZnO ) 2 ,
ε med MG = ε H 2 O 2 φ ZnO ( ε ZnO ε H 2 O ) + ε ZnO + 2 ε H 2 O φ ZnO ( ε H 2 O ε ZnO ) + ε ZnO + 2 ε H 2 O ,
r i j s = k i ( ω ) k j ( ω ) k i ( ω ) + k j ( ω ) ,
r i j p = ε i k j ( ω ) ε j k i ( ω ) ε i k j ( ω ) + ε j k i ( ω ) ,
t i j s = 2 k i ( ω ) k i ( ω ) + k j ( ω ) ,
t i j p = 2 ε i ε j k i ( ω ) ε i k j ( ω ) + ε j k i ( ω ) .
k 1 ( ω ) = ω c ε 1 cos θ ,
k 2 ( ω ) = ω c ε 2 ( ω ) ε 1 si n 2 θ ,
k 2 ( ω ) = ω c ( ε 2 ( ω ) ε 2 ( ω ) ) 1 / 2 ε 2 ( ω ) ε 1 si n 2 θ ,
k 3 ( ω ) = ω c ε 3 ( ω ) ε 1 si n 2 θ ,
k 4 ( ω ) = ω c ε 4 ( ω ) ε 1 si n 2 θ ,
k 4 ( ω ) = ω c ( ε 4 ( ω ) ε 4 ( ω ) ) 1 / 2 ε 4 ( ω ) ε 1 si n 2 θ ,
k 5 ( ω ) = ω c ε 5 ( ω ) ε 1 si n 2 θ ,
k 6 ( ω ) = ω c ε 6 ( ω ) ε 1 si n 2 θ ,
M ~ = 1 t 1 , 2 ( e i δ 2 r 1 , 2 e i δ 2 r 1 , 2 e i δ 2 e i δ 2 ) . 1 t 2 , 3 ( e i δ 3 r 2 , 3 e i δ 3 r 2 , 3 e i δ 3 e i δ 3 ) . 1 t 3 , 4 ( e i δ 4 r 3 , 4 e i δ 4 r 3.4 e i δ 4 e i δ 4 ) . 1 t 4 , 5 ( e i δ 5 r 4 , 5 e i δ 5 r 4 , 5 e i δ 5 e i δ 5 ) . 1 t 5 , 6 ( 1 r 5 , 6 r 5 , 6 1 )
δ 2 ( , ) = k 2 ( , ) d ,
δ 3 = k 3 L NPfilms ,
δ 4 ( , ) = k 4 ( , ) d ,
δ 5 = k 5 ( h d 2 ) .
k med , 1 ( ω ) = ω c ε med cos θ ,
k NPfilm ( ω ) = ω c ε NPfilm ( ω ) ε med si n 2 θ ,
k NPfilm ( ω ) = ω c ( ε NPfilm ( ω ) ε NPfilm ( ω ) ) 1 / 2 ε NPfilm ( ω ) ε med si n 2 θ ,
k med ( ω ) = ω c ε med ε med si n 2 θ ,
k NPfilm , N ( ω ) = ω c ε NPfilm , N ( ω ) ε med si n 2 θ ,
k NPfilm , N ( ω ) = ω c ( ε NPfilm , N ( ω ) ε NPfilm , N ( ω ) ) 1 / 2 ε NPfilm , N ( ω ) ε med si n 2 θ ,
k TCE ( ω ) = ω c ε TCE ε med si n 2 θ .
δ NPfilm ( , ) = k NPfilm ( , ) d ,
δ NPfilm , N ( , ) = k NPfilm , N ( , ) d ,
δ med = k med L NPfilm ,
δ med , h = k med , h ( h d 2 ) .
M ~ = n = 1 N M ~ n , n + 1
M ~ = M med 1 , NPfilm . ( M NPfilm , med . M med , NPfilm ) N 2 . M NPfilm , med . M med , NPfilmN . M NPfilmN , medh . M medh , TCE .

Metrics