Abstract

Healthcare and biosensing have attracted wide attention worldwide, with the development of chip integration technology in recent decades. In terms of compact sensor design with high performance and high accuracy, photonic crystal structures based on Fano resonance offer superior solutions. Here, we design a photonic crystal structure for sensing applications by proposing modeling for a three-cavity-coupling system and derive the transmission expression based on temporal coupled-mode theory (TCMT). The correlations between the structural parameters and the transmission are discussed. Ultimately, the geometry, composed of an air mode cavity, a dielectric mode cavity and a cavity of wide linewidth, is proved to be feasible for simultaneous sensing of refractive index (RI) and temperature (T). For the air mode cavity, the RI and T sensitivities are 523 nm/RIU and 2.5 pm/K, respectively. For the dielectric mode cavity, the RI and T sensitivities are 145 nm/RIU and 60.0 pm/K, respectively. The total footprint of the geometry is only 14 × 2.6 (length × width) µm2. Moreover, the deviation ratios of the proposed sensor are approximately 0.6% and 0.4% for RI and T, respectively. Compared with the researches lately published, the sensor exhibits compact footprint and high accuracy. Therefore, we believe the proposed sensor will contribute to the future compact lab-on-chip detection system design.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Simultaneously high-Q and high-sensitivity slotted photonic crystal nanofiber cavity for complex refractive index sensing

Chao-Sheng Deng, Ming-Jun Li, Jie Peng, Wen-Liang Liu, and Jian-Xin Zhong
J. Opt. Soc. Am. B 34(8) 1624-1631 (2017)

Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing

Fujun Sun, Zhongyuan Fu, Chunhong Wang, Zhaoxiang Ding, Chao Wang, and Huiping Tian
Appl. Opt. 56(15) 4363-4368 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
    [Crossref]
  2. L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
    [Crossref]
  3. K. Tian, G. Farrell, W. Yang, X. Wang, E. Lewis, and P. Wang, “Simultaneous Measurement of Displacement and Temperature Based on a Balloon-Shaped Bent SMF Structure Incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
    [Crossref]
  4. A. Wada, S. Tanaka, and N. Takahashi, “Fast and High-Resolution Simultaneous Measurement of Temperature and Strain Using a Fabry–Perot Interferometer in Polarization-Maintaining Fiber With Laser Diodes,” J. Lightwave Technol. 36(4), 1011–1017 (2018).
    [Crossref]
  5. Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
    [Crossref]
  6. Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
    [Crossref]
  7. X. Li, C. Wang, Z. Wang, Z. Fu, F. Sun, and H. Tian, “Anti-External Interference Sensor Based on Cascaded Photonic Crystal Nanobeam Cavities for Simultaneous Detection of Refractive Index and Temperature,” J. Lightwave Technol. 37(10), 2209–2216 (2019).
    [Crossref]
  8. C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
    [Crossref]
  9. P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities,” Opt. Express 25(23), 28398–28406 (2017).
    [Crossref]
  10. L. Zhang, F. Sun, Z. Fu, C. Wang, and H. Tian, “Ultra-compact dual-parameter sensing based on a photonic crystal rectangular holes nanobeam multimode microcavity,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–2.
  11. X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).
  12. B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
    [Crossref]
  13. Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
    [Crossref]
  14. W. Luo, S. Chen, L. Chen, H. Li, P. Miao, H. Gao, Z. Hu, and M. Li, “Dual-angle technique for simultaneous measurement of refractive index and temperature based on a surface plasmon resonance sensor,” Opt. Express 25(11), 12733–12742 (2017).
    [Crossref]
  15. F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
    [Crossref]
  16. W. Luo, R. Wang, H. Li, J. Kou, X. Zeng, H. Huang, X. Hu, and W. Huang, “Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors,” Opt. Express 27(2), 576–589 (2019).
    [Crossref]
  17. F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
    [Crossref]
  18. P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using a dual polarization ring,” Appl. Opt. 55(13), 3537–3541 (2016).
    [Crossref]
  19. J. Hu, T. Lang, and G. Shi, “Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface,” Opt. Express 25(13), 15241–15251 (2017).
    [Crossref]
  20. T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
    [Crossref]
  21. S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
    [Crossref]
  22. S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
    [Crossref]
  23. Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
    [Crossref]
  24. R. Gao, D. Lu, J. Cheng, and Z. Qi, “Simultaneous measurement of refractive index and flow rate using graphene-coated optofluidic anti-resonant reflecting guidance,” Opt. Express 25(23), 28731–28742 (2017).
    [Crossref]
  25. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  26. D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.
  27. G. Dong, Y. Wang, and X. Zhang, “High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity,” Opt. Lett. 43(24), 5977–5980 (2018).
    [Crossref]
  28. D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B 97(11), 115431 (2018).
    [Crossref]
  29. A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
    [Crossref]
  30. A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
    [Crossref]
  31. T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26(13), 16365–16376 (2018).
    [Crossref]
  32. Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, S. Chen, and J. Tian, “High-quality-factor multiple Fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842–1845 (2018).
    [Crossref]
  33. G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
    [Crossref]
  34. Z. Wang, C. Wang, F. Sun, Z. Fu, Z. Xiao, J. Wang, and H. Tian, “Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes,” J. Opt. Soc. Am. B 36(2), 215–222 (2019).
    [Crossref]
  35. Z. Meng and Z. Li, “Control of Fano Resonances in Photonic Crystal Nanobeam Side-Coupled with Nanobeam Cavities and their Applications to Refractive Index Sensing,” J. Phys. D: Appl. Phys. 51(9), 095106 (2018).
    [Crossref]
  36. M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
    [Crossref]
  37. S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
    [Crossref]
  38. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20(3), 569–572 (2003).
    [Crossref]
  39. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  40. P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
    [Crossref]
  41. Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
    [Crossref]
  42. S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
    [Crossref]
  43. J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
    [Crossref]
  44. S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
    [Crossref]
  45. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
    [Crossref]
  46. F. Sun, J. Wei, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Coexistence of air and dielectric modes in single nanocavity,” Opt. Express 27(10), 14085–14098 (2019).
    [Crossref]

2019 (10)

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
[Crossref]

X. Li, C. Wang, Z. Wang, Z. Fu, F. Sun, and H. Tian, “Anti-External Interference Sensor Based on Cascaded Photonic Crystal Nanobeam Cavities for Simultaneous Detection of Refractive Index and Temperature,” J. Lightwave Technol. 37(10), 2209–2216 (2019).
[Crossref]

W. Luo, R. Wang, H. Li, J. Kou, X. Zeng, H. Huang, X. Hu, and W. Huang, “Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors,” Opt. Express 27(2), 576–589 (2019).
[Crossref]

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
[Crossref]

Z. Wang, C. Wang, F. Sun, Z. Fu, Z. Xiao, J. Wang, and H. Tian, “Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes,” J. Opt. Soc. Am. B 36(2), 215–222 (2019).
[Crossref]

F. Sun, J. Wei, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Coexistence of air and dielectric modes in single nanocavity,” Opt. Express 27(10), 14085–14098 (2019).
[Crossref]

2018 (18)

J. Wei, F. Sun, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Deterministic aperiodic photonic crystal nanobeam supporting adjustable multiple mode-matched resonances,” Opt. Lett. 43(21), 5407–5410 (2018).
[Crossref]

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Z. Meng and Z. Li, “Control of Fano Resonances in Photonic Crystal Nanobeam Side-Coupled with Nanobeam Cavities and their Applications to Refractive Index Sensing,” J. Phys. D: Appl. Phys. 51(9), 095106 (2018).
[Crossref]

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26(13), 16365–16376 (2018).
[Crossref]

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, S. Chen, and J. Tian, “High-quality-factor multiple Fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842–1845 (2018).
[Crossref]

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

G. Dong, Y. Wang, and X. Zhang, “High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity,” Opt. Lett. 43(24), 5977–5980 (2018).
[Crossref]

D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B 97(11), 115431 (2018).
[Crossref]

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
[Crossref]

Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
[Crossref]

K. Tian, G. Farrell, W. Yang, X. Wang, E. Lewis, and P. Wang, “Simultaneous Measurement of Displacement and Temperature Based on a Balloon-Shaped Bent SMF Structure Incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

A. Wada, S. Tanaka, and N. Takahashi, “Fast and High-Resolution Simultaneous Measurement of Temperature and Strain Using a Fabry–Perot Interferometer in Polarization-Maintaining Fiber With Laser Diodes,” J. Lightwave Technol. 36(4), 1011–1017 (2018).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

2017 (6)

2016 (3)

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using a dual polarization ring,” Appl. Opt. 55(13), 3537–3541 (2016).
[Crossref]

2015 (1)

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
[Crossref]

2014 (2)

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

2011 (1)

2003 (1)

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Aharonovich, I.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Alameh, K.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Alù, A.

D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B 97(11), 115431 (2018).
[Crossref]

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Becker, M.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Bekele, D. A.

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Bishop, J.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Chakravarty, S.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Chang, Y.

Chen, K.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Chen, L.

Chen, R. T.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Chen, S.

Cheng, H.

Cheng, J.

Christian, J.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Cui, Y.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Dong, B.

Dong, G.

Ebendorff-Heidepriem, H.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Fan, S.

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Farrell, G.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

K. Tian, G. Farrell, W. Yang, X. Wang, E. Lewis, and P. Wang, “Simultaneous Measurement of Displacement and Temperature Based on a Balloon-Shaped Bent SMF Structure Incorporating an LPG,” J. Lightwave Technol. 36(20), 4960–4966 (2018).
[Crossref]

Fröch, J. E.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Fu, Z.

X. Li, C. Wang, Z. Wang, Z. Fu, F. Sun, and H. Tian, “Anti-External Interference Sensor Based on Cascaded Photonic Crystal Nanobeam Cavities for Simultaneous Detection of Refractive Index and Temperature,” J. Lightwave Technol. 37(10), 2209–2216 (2019).
[Crossref]

Z. Wang, C. Wang, F. Sun, Z. Fu, Z. Xiao, J. Wang, and H. Tian, “Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes,” J. Opt. Soc. Am. B 36(2), 215–222 (2019).
[Crossref]

C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
[Crossref]

L. Zhang, F. Sun, Z. Fu, C. Wang, and H. Tian, “Ultra-compact dual-parameter sensing based on a photonic crystal rectangular holes nanobeam multimode microcavity,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–2.

Gao, H.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

W. Luo, S. Chen, L. Chen, H. Li, P. Miao, H. Gao, Z. Hu, and M. Li, “Dual-angle technique for simultaneous measurement of refractive index and temperature based on a surface plasmon resonance sensor,” Opt. Express 25(11), 12733–12742 (2017).
[Crossref]

Gao, R.

Giessen, H.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

He, S.

Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
[Crossref]

Hegde, R. S.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Hentschel, M.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Hong, S.

S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
[Crossref]

Hosseini, A.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Hu, H.

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
[Crossref]

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Hu, J.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

J. Hu, T. Lang, and G. Shi, “Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface,” Opt. Express 25(13), 15241–15251 (2017).
[Crossref]

Hu, S.

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Hu, X.

Hu, Z.

Huang, H.

Huang, Q.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Huang, W.

Jia, J.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Jiang, X.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Jiang, Y.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Joannopoulos, J. D.

Kang, Z.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Kim, C.

S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
[Crossref]

Kim, S.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Kou, J.

Krasnok, A.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Kwong, D. N.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Lai, W.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Lang, T.

Lee, C.

Lewis, E.

Li, F.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Li, G.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Li, H.

Li, L.

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Li, M.

Li, X.

X. Li, C. Wang, Z. Wang, Z. Fu, F. Sun, and H. Tian, “Anti-External Interference Sensor Based on Cascaded Photonic Crystal Nanobeam Cavities for Simultaneous Detection of Refractive Index and Temperature,” J. Lightwave Technol. 37(10), 2209–2216 (2019).
[Crossref]

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Li, Y.

Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
[Crossref]

Li, Z.

Lim, S.

S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
[Crossref]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lin, Q.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Lin, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Liu, G.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Liu, H.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Liu, P.

Liu, S.

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Liu, W.

Liu, Y.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Loncar, M.

Lu, D.

Luo, W.

Luo, X.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Ma, T.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Ma, Y.

Meng, Z.

Z. Meng and Z. Li, “Control of Fano Resonances in Photonic Crystal Nanobeam Side-Coupled with Nanobeam Cavities and their Applications to Refractive Index Sensing,” J. Phys. D: Appl. Phys. 51(9), 095106 (2018).
[Crossref]

Mesch, M.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Miao, P.

Michel, D.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Moravvej-Farshi, M. K.

A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
[Crossref]

Mork, J.

T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26(13), 16365–16376 (2018).
[Crossref]

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Nguyen, L. V.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Oxenløwe, L. K.

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Pham, D.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Qi, Z.

Qiu, H.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Quan, Q.

Rasmussen, T. S.

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sang, X.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Schäferling, M.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Shi, G.

Shi, Y.

Shum, P. P.

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Sounas, D. L.

D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B 97(11), 115431 (2018).
[Crossref]

Straw, M.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Suh, W.

Sun, F.

Sun, L.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Sun, Y.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Takahashi, N.

Tanaka, S.

Taniguchi, T.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Tian, H.

Tian, J.

Tian, K.

Toth, M.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Totonjian, D.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Tymchenko, M.

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Wada, A.

Wang, C.

X. Li, C. Wang, Z. Wang, Z. Fu, F. Sun, and H. Tian, “Anti-External Interference Sensor Based on Cascaded Photonic Crystal Nanobeam Cavities for Simultaneous Detection of Refractive Index and Temperature,” J. Lightwave Technol. 37(10), 2209–2216 (2019).
[Crossref]

Z. Wang, C. Wang, F. Sun, Z. Fu, Z. Xiao, J. Wang, and H. Tian, “Double-layer Fano resonance photonic-crystal-slab-based sensor for label-free detection of different size analytes,” J. Opt. Soc. Am. B 36(2), 215–222 (2019).
[Crossref]

C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
[Crossref]

L. Zhang, F. Sun, Z. Fu, C. Wang, and H. Tian, “Ultra-compact dual-parameter sensing based on a photonic crystal rectangular holes nanobeam multimode microcavity,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–2.

Wang, E.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Wang, F.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Wang, J.

Wang, K.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Wang, L.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Wang, M.

Wang, P.

Wang, Q.

Wang, R.

Wang, S.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Wang, X.

Wang, Y.

G. Dong, Y. Wang, and X. Zhang, “High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity,” Opt. Lett. 43(24), 5977–5980 (2018).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Wang, Z.

Warren-Smith, S. C.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

Watanabe, K.

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Wei, J.

Weiss, S. M.

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

Weiss, T.

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Wu, B.

B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
[Crossref]

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Wu, F.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Wu, Q.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Wu, S.

Xia, S.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Xiao, F.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Xiao, Z.

Xiong, L.

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Xu, A.

F. Xiao, D. Michel, G. Li, A. Xu, and K. Alameh, “Simultaneous Measurement of Refractive Index and Temperature Based on Surface Plasmon Resonance Sensors,” J. Lightwave Technol. 32(21), 4169–4173 (2014).
[Crossref]

Xu, X.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

Xue, P.

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

Yan, B.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Yan, G.

Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
[Crossref]

Yang, H.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Yang, J.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Yang, M.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Yang, W.

Yang, Y.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Yavari, M. H.

A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
[Crossref]

Yin, B.

Yu, C.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Yu, F.

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

Yu, H.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Yu, P.

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

Yu, Q.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Yu, Y.

T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26(13), 16365–16376 (2018).
[Crossref]

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Yu, Z.

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

Yuan, J.

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

Yvind, K.

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Zali, A. R.

A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
[Crossref]

Zeng, X.

Zhai, X.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Zhang, H.

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

Zhang, L.

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

L. Zhang, F. Sun, Z. Fu, C. Wang, and H. Tian, “Ultra-compact dual-parameter sensing based on a photonic crystal rectangular holes nanobeam multimode microcavity,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–2.

Zhang, X.

Zhang, Y.

Y. Zhang, W. Liu, Z. Li, Z. Li, H. Cheng, S. Chen, and J. Tian, “High-quality-factor multiple Fano resonances for refractive index sensing,” Opt. Lett. 43(8), 1842–1845 (2018).
[Crossref]

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
[Crossref]

Zhao, C.

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Zhao, D.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Zhao, X.

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

Zhao, Y.

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
[Crossref]

Zheng, J.

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

Zhou, J.

C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
[Crossref]

Zhou, W.

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

Zhu, W.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Zou, Y.

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

ACS Photonics (1)

S. Hu and S. M. Weiss, “Design of Photonic Crystal Cavities for Extreme Light Concentration,” ACS Photonics 3(9), 1647–1653 (2016).
[Crossref]

ACS Sens. (1)

M. Mesch, T. Weiss, M. Schäferling, M. Hentschel, R. S. Hegde, and H. Giessen, “Highly Sensitive Refractive Index Sensors with Plasmonic Nanoantennas−Utilization of Optimal Spectral Detuning of Fano Resonances,” ACS Sens. 3(5), 960–966 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Wang, Y. Liu, D. Zhao, H. Yang, W. Zhou, and Y. Sun, “Optofluidic Fano resonance photonic crystal refractometric sensors,” Appl. Phys. Lett. 110(9), 091105 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Zou, S. Chakravarty, D. N. Kwong, W. Lai, X. Xu, X. Lin, A. Hosseini, and R. T. Chen, “Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors with High Yield,” IEEE J. Sel. Top. Quantum Electron. 20(4), 171–180 (2014).
[Crossref]

A. R. Zali, M. K. Moravvej-Farshi, and M. H. Yavari, “Small-Signal Equivalent Circuit Model of Photonic Crystal Fano Laser,” IEEE J. Sel. Top. Quantum Electron. 25(6), 1–8 (2019).
[Crossref]

IEEE Microw. Wireless Compon. Lett. (1)

S. Lim, C. Kim, and S. Hong, “Simultaneous Measurement of Thickness and Permittivity by Means of the Resonant Frequency Fitting of a Microstrip Line Ring Resonator,” IEEE Microw. Wireless Compon. Lett. 28(6), 539–541 (2018).
[Crossref]

IEEE Photonics J. (2)

T. Ma, J. Yuan, F. Li, L. Sun, Z. Kang, B. Yan, Q. Wu, X. Sang, K. Wang, H. Liu, F. Wang, B. Wu, C. Yu, and G. Farrell, “Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability,” IEEE Photonics J. 10(2), 1–12 (2018).
[Crossref]

C. Wang, Z. Fu, F. Sun, J. Zhou, and H. Tian, “Large-Dynamic-Range Dual-Parameter Sensor Using Broad FSR Multimode Photonic Crystal Nanobeam Cavity,” IEEE Photonics J. 10(5), 1–14 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

L. Zhang, Y. Jiang, H. Gao, J. Jia, Y. Cui, S. Wang, and J. Hu, “Simultaneous Measurements of Temperature and Pressure With a Dual-Cavity Fabry–Perot Sensor,” IEEE Photonics Technol. Lett. 31(1), 106–109 (2019).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

S. Liu, H. Zhang, L. Li, L. Xiong, and P. P. Shum, “Liquid Core Fiber Interferometer for Simultaneous Measurement of Refractive Index and Temperature,” IEEE Photonics Technol. Lett. 31(2), 189–192 (2019).
[Crossref]

P. Yu, H. Qiu, H. Yu, F. Wu, Z. Wang, X. Jiang, and J. Yang, “High-Q and High-Order Side-Coupled Air-Mode Nanobeam Photonic Crystal Cavities in Silicon,” IEEE Photonics Technol. Lett. 28(20), 2121–2124 (2016).
[Crossref]

IEEE Sens. J. (4)

Y. Yang, E. Wang, K. Chen, Z. Yu, and Q. Yu, “Fiber-Optic Fabry–Perot Sensor for Simultaneous Measurement of Tilt Angle and Vibration Acceleration,” IEEE Sens. J. 19(6), 2162–2169 (2019).
[Crossref]

H. Gao, Y. Jiang, Y. Cui, L. Zhang, J. Jia, and J. Hu, “Dual-Cavity Fabry–Perot Interferometric Sensors for the Simultaneous Measurement of High Temperature and High Pressure,” IEEE Sens. J. 18(24), 10028–10033 (2018).
[Crossref]

Y. Li, G. Yan, and S. He, “Thin-Core Fiber Sandwiched Photonic Crystal Fiber Modal Interferometer for Temperature and Refractive Index Sensing,” IEEE Sens. J. 18(16), 6627–6632 (2018).
[Crossref]

F. Yu, P. Xue, X. Zhao, and J. Zheng, “Simultaneous Measurement of Refractive Index and Temperature Based on a Peanut-Shape Structure In-Line Fiber Mach–Zehnder Interferometer,” IEEE Sens. J. 19(3), 950–955 (2019).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

Z. Meng and Z. Li, “Control of Fano Resonances in Photonic Crystal Nanobeam Side-Coupled with Nanobeam Cavities and their Applications to Refractive Index Sensing,” J. Phys. D: Appl. Phys. 51(9), 095106 (2018).
[Crossref]

Mater. Today (1)

A. Krasnok, M. Tymchenko, and A. Alù, “Nonlinear metasurfaces: a paradigm shift in nonlinear optics,” Mater. Today 21(1), 8–21 (2018).
[Crossref]

Nat. Commun. (1)

S. Kim, J. E. Fröch, J. Christian, M. Straw, J. Bishop, D. Totonjian, K. Watanabe, T. Taniguchi, M. Toth, and I. Aharonovich, “Photonic crystal cavities from hexagonal boron nitride,” Nat. Commun. 9(1), 2623 (2018).
[Crossref]

Nat. Photonics (1)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Opt. Express (9)

Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011).
[Crossref]

F. Sun, J. Wei, B. Dong, Y. Ma, Y. Chang, H. Tian, and C. Lee, “Coexistence of air and dielectric modes in single nanocavity,” Opt. Express 27(10), 14085–14098 (2019).
[Crossref]

T. S. Rasmussen, Y. Yu, and J. Mork, “Modes, stability, and small-signal response of photonic crystal Fano lasers,” Opt. Express 26(13), 16365–16376 (2018).
[Crossref]

R. Gao, D. Lu, J. Cheng, and Z. Qi, “Simultaneous measurement of refractive index and flow rate using graphene-coated optofluidic anti-resonant reflecting guidance,” Opt. Express 25(23), 28731–28742 (2017).
[Crossref]

J. Hu, T. Lang, and G. Shi, “Simultaneous measurement of refractive index and temperature based on all-dielectric metasurface,” Opt. Express 25(13), 15241–15251 (2017).
[Crossref]

P. Liu and Y. Shi, “Simultaneous measurement of refractive index and temperature using cascaded side-coupled photonic crystal nanobeam cavities,” Opt. Express 25(23), 28398–28406 (2017).
[Crossref]

W. Luo, S. Chen, L. Chen, H. Li, P. Miao, H. Gao, Z. Hu, and M. Li, “Dual-angle technique for simultaneous measurement of refractive index and temperature based on a surface plasmon resonance sensor,” Opt. Express 25(11), 12733–12742 (2017).
[Crossref]

W. Luo, R. Wang, H. Li, J. Kou, X. Zeng, H. Huang, X. Hu, and W. Huang, “Simultaneous measurement of refractive index and temperature for prism-based surface plasmon resonance sensors,” Opt. Express 27(2), 576–589 (2019).
[Crossref]

B. Yin, S. Wu, M. Wang, W. Liu, H. Li, B. Wu, and Q. Wang, “High-sensitivity refractive index and temperature sensor based on cascaded dual-wavelength fiber laser and SNHNS interferometer,” Opt. Express 27(1), 252–264 (2019).
[Crossref]

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. B (1)

D. L. Sounas and A. Alù, “Fundamental bounds on the operation of Fano nonlinear isolators,” Phys. Rev. B 97(11), 115431 (2018).
[Crossref]

Plasmonics (1)

G. Liu, X. Zhai, L. Wang, Q. Lin, S. Xia, X. Luo, and C. Zhao, “A High-Performance Refractive Index Sensor Based on Fano Resonance in Si Split-Ring Metasurface,” Plasmonics 13(1), 15–19 (2018).
[Crossref]

Sens. Actuators, B (1)

Y. Zhang, Y. Zhao, and H. Hu, “Miniature photonic crystal cavity sensor for simultaneous measurement of liquid concentration and temperature,” Sens. Actuators, B 216, 563–571 (2015).
[Crossref]

Other (3)

L. Zhang, F. Sun, Z. Fu, C. Wang, and H. Tian, “Ultra-compact dual-parameter sensing based on a photonic crystal rectangular holes nanobeam multimode microcavity,” in Proceedings of IEEE Conference on Lasers and Electro-Optics Pacific Rim (IEEE, 2017), pp. 1–2.

X. Li, L. V. Nguyen, M. Becker, D. Pham, H. Ebendorff-Heidepriem, and S. C. Warren-Smith, “Simultaneous measurement of temperature and refractive index using an exposed core microstructured optical fiber,” IEEE J. Sel. Top. Quantum Electron. Print ISSN: 1077-260X (Date of Publication: 01 April 2019, in press).

D. A. Bekele, Y. Yu, H. Hu, L. K. Oxenløwe, K. Yvind, and J. Mork, “Fano Resonances for Realizing Compact and Low Energy Consumption Photonic Switches,” in Proceedings of IEEE International Conference on Transparent Optical Networks (IEEE, 2018), pp. 504–509.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. (a) Modeling for the three-cavity-coupling system. The decays γ (cav1 to the waveguide γwg (black) and each total radiative field γm (pink)), and couplings κ (side-coupled cavities to cav1 (green)) are included. The transmitted coefficient between the input and cav1 is in brown, with the incidence sin (yellow) and outcoming filed sout (purple). (b) A suspended PhC realization of the modeling. (c) The schematic of the proposed sensor from xy perspective.
Fig. 2.
Fig. 2. (a) Examples of different rotated angles (θ) from 0 to 45°. (b) TE band diagram of cav2 with θ2 = 0 (red) and 45° (black). The red star indicates cav2 resonant state. (c) TE band diagram of cav3 with θ3 = 0 (black) and 45° (blue). The blue star indicates cav3 resonant state. The linear fitting of mirror strength via changing air hole number of cav2 (d) and cav3 (e). The Gaussian envelopes of the electric field distribution of cav2 (f) and cav3 (g).
Fig. 3.
Fig. 3. (a) Transmission comparison between the structures of both cavities and one cavity side-coupled to cav1. (b) The resonant wavelength shifts via different coupling strengths of cav2 (red) and cav3 (blue). (c) Transmission of the sensor. Electric field distributions of cav1 (e), cav2 (d) and cav3 (f) at resonant wavelength (λ1 = 1555.54 nm, λ2 = 1539.29 nm, and λ3 = 1576.37 nm).
Fig. 4.
Fig. 4. (a) The simulated transmission spectra varying the surrounding RI changes (Δn) from 0.000 to 0.004 when T change (ΔT) remains 0 (T = 300 K). (b) The linear fitting of the corresponding resonant wavelength shifts via varying different Δn. (c) The simulated transmission spectra varying the ambient ΔT from 0 K to 40 K when Δn remains 0 (n = 1.33). (d) The linear fitting of the corresponding resonant wavelength shifts via varying different ΔT.

Tables (3)

Tables Icon

Table 1. The geometric and resonant parameters of cav1, cav2, and cav3

Tables Icon

Table 2. Simultaneous measurements of RI and T using the three-cavity-coupling sensor

Tables Icon

Table 3. Comparisons with other structures for simultaneous RI and T sensing

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

d a 1 d t = i ω 1 a 1 ( γ 1 e + γ 1 i ) a 1 i κ 12 a 2 i κ 13 a 3 2 γ w g a 1 + γ w g s i n
d a 2 d t = i ω 2 a 2 ( γ 2 e + γ 2 i ) a 2 i κ 12 a 1
d a 3 d t = i ω 3 a 3 ( γ 3 e + γ 3 i ) a 3 i κ 13 a 1
s o u t = γ w g a 1
a m = A m e i ω t
d a m d t = i ω A m e i ω t + d A m d t e i ω t
d A 1 d t = ( i Δ 1 γ 1 ) A 1 i κ 12 A 2 i κ 13 A 3 2 γ w g A 1 + γ w g S i n
d A 2 d t = ( i Δ 2 γ 2 ) A 2 i κ 12 A 1
d A 3 d t = ( i Δ 3 γ 3 ) A 3 i κ 13 A 1
S o u t = γ w g A 1
T ( ω ) = | s o u t s i n | 2 = γ w g 3 [ i Δ 1 γ 1 + κ 12 2 i Δ 2 γ 2 + κ 13 2 i Δ 3 γ 3 2 γ w g ] 2
γ m = ω Q r m
γ w g = ω Q w g 1
κ 1 m = ω 2 Q w g m
T( ω ) =  ( ω Q w g 1 ) 3 [ ( i Δ 1 ω Q r 1 ) + ω 2 Q w g 2 ( i Δ 2 ω / ω Q r 2 Q r 2 ) + ω 2 Q w g 3 ( i Δ 3 ω / ω Q r 3 Q r 3 ) 2 ( ω Q w g 1 ) ] 2
Q i = ω 0 U / P i
1 Q m = 1 Q r m + 1 Q w g m
( Δ λ 2 Δ λ 3 ) = S n , T ( Δ n Δ T ) = ( S n , 2 S T , 2 S n , 3 S T , 3 ) ( Δ n Δ T )
( Δ n Δ T ) = S n , T 1 ( Δ λ 2 Δ λ 3 ) = ( S n , 2 S T , 2 S n , 3 S T , 3 ) 1 ( Δ λ 2 Δ λ 3 ) = 1 | S n , T | ( S T , 3  -  S T , 2  -  S n , 3 S n , 2 ) ( Δ λ 2 Δ λ 3 )
( a n , a T ) = ( | | S T , 2 | + | S T , 3 | | S n , T | | , | | S n , 2 | + | S n , 3 | | S n , T | | )
( Δ λ 2 Δ λ 3 ) = ( 523 nm/RIU 2.5 pm/K 145 nm/RIU 60 .0pm/K ) ( Δ n Δ T )
( Δ n Δ T ) = ( 0.001934 0.00008059 4.6747 16.8614 ) ( Δ λ 2 Δ λ 3 )

Metrics