Abstract

Computer generated holograms (CGHs) are powerful optical elements used in many fields, such as wavefront shaping, quality testing of complex optics, and anti-counterfeiting devices. The Lee algorithm is the most used to generate binary amplitude Fourier holograms. Grayscale CGHs are known to give a higher reconstruction quality than binary holograms, but they usually require a cumbersome production process. A very simple and straightforward method of manufacturing rewritable grayscale CGHs is proposed here by taking advantage of two key components: a digital micro-mirror device (DMDs) and a photochromic plate. An innovative algorithm, named Island algorithm, able to generate grayscale amplitude Fourier CGHs, is reported and compared with the standard Lee approach, based on 9 levels. A crucial advantage lies on the fact that the increase or decrease of the quantification does not affect the spatial resolution. In other words, the new coding leads to a higher spatial resolution (for a given CGH size) and a reconstructed image with an order of magnitude higher contrast with respect to the classical Lee-coded hologram. In order to show the huge potential of our approach, a 201 level Island hologram is designed, produced and reconstructed, pushing the contrast to values higher than$\; {10^4}$. These results reveal the potential of our process as well as our algorithm for generating programmable grayscale CGHs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Programmable CGH on photochromic plates coded with DMD generated masks

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli
Opt. Express 25(6) 6945-6953 (2017)

Binary computer-generated holograms for security applications from a synthetic double-exposure method by electron-beam lithography

Nobukazu Yoshikawa, Masahide Itoh, and Toyohiko Yatagai
Opt. Lett. 23(18) 1483-1485 (1998)

Computational-weighted Fourier single-pixel imaging via binary illumination

Jian Huang, Dongfeng Shi, Kee Yuan, Shunxing Hu, and Yingjian Wang
Opt. Express 26(13) 16547-16559 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
    [Crossref]
  2. M. Bass, “Use of computer generated holograms in optical testing,” Handbook of Optics: Volume II - Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry3rd Edition, (McGraw-Hill Professional, 2010).
  3. L. Jacubowiez, “Computer-generated holograms,” Photoniques 201738–44 (2017).
    [Crossref]
  4. G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
    [Crossref]
  5. D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).
  6. G. A. Cirino, “Digital holography: computer-generated holograms and diffractive optics,” in Holography - Different Fields of ApplicationF. Monroy, ed. (IntechOpen, 2011).
  7. B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168 (1969).
    [Crossref]
  8. Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
    [Crossref]
  9. N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
    [Crossref]
  10. R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
    [Crossref]
  11. F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
    [Crossref]
  12. R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
    [Crossref]
  13. M. Fujiwara, N. Takada, H. Araki, C. Ooi, S. Ikawa, Y. Maeda, H. Niwase, T. Kakue, T. Shimobaba, and T. Ito, “Gradation representation method using a binary-weighted computer-generated hologram based on pulse-width modulation,” Chin. Opt. Lett. 15(6), 060901 (2017).
    [Crossref]
  14. C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
    [Crossref]
  15. G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
    [Crossref]
  16. N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
    [Crossref]
  17. Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
    [Crossref]
  18. L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
    [Crossref]
  19. Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
    [Crossref]
  20. N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
    [Crossref]
  21. H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
    [Crossref]
  22. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26(20), 4351–4360 (1987).
    [Crossref]
  23. G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
    [Crossref]
  24. F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
    [Crossref]

2018 (1)

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

2017 (5)

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

L. Jacubowiez, “Computer-generated holograms,” Photoniques 201738–44 (2017).
[Crossref]

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

M. Fujiwara, N. Takada, H. Araki, C. Ooi, S. Ikawa, Y. Maeda, H. Niwase, T. Kakue, T. Shimobaba, and T. Ito, “Gradation representation method using a binary-weighted computer-generated hologram based on pulse-width modulation,” Chin. Opt. Lett. 15(6), 060901 (2017).
[Crossref]

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

2016 (1)

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

2014 (1)

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

2012 (1)

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
[Crossref]

2011 (4)

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

2010 (1)

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

2007 (1)

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

2004 (3)

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

1999 (1)

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

1987 (1)

1969 (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168 (1969).
[Crossref]

Abe, J.

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
[Crossref]

Alata, R.

Araki, H.

Barette, R.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Bass, M.

M. Bass, “Use of computer generated holograms in optical testing,” Handbook of Optics: Volume II - Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry3rd Edition, (McGraw-Hill Professional, 2010).

Benton, S.A.

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

Bertarelli, C.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Bianco, A.

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref]

Bon, W.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Boschin, W.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Brown, B. R.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168 (1969).
[Crossref]

Canepa, M.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

Capaldo, P.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Castagna, R.

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Chen, Y.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Chu, C.-S.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Cirami, R.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Cirino, G. A.

G. A. Cirino, “Digital holography: computer-generated holograms and diffractive optics,” in Holography - Different Fields of ApplicationF. Monroy, ed. (IntechOpen, 2011).

Colella, L.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

Consentino, R.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Coretti, I.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Dassa, G.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref]

Di Marcantonio, P.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Duvet, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Fabron, C.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Fan, M.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Fujiwara, M.

Gao, Y.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

Ghedina, A.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Giang, H. N.

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

Gonzalez, M.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Grassi, E.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

He, S.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

Hennelly, B.M.

D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).

Hermes, S.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Ikawa, S.

Ishii, N.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
[Crossref]

Ito, T.

Jacquet, M.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Jacubowiez, L.

L. Jacubowiez, “Computer-generated holograms,” Photoniques 201738–44 (2017).
[Crossref]

Kakue, T.

Kato, T.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
[Crossref]

Kelly, D.P.

D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).

Kinashi, K.

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

Kobayashi, Y.

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Lanzoni, P.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Lie, M.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

Lin, H.-Y.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Lohmann, A. W.

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168 (1969).
[Crossref]

Lu, Y.-T.

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

Luo, N.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

Maeda, Y.

Mafakheri, E.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Marchand, L.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Massari, M.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Menke, N.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Molinari, E.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Molnar, R.A.

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

Monaghan, D.S.

D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).

Moschetti, M.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Nesbitt, R.S.

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

Nicastro, L.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Niwase, H.

Oggioni, L.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

Ooi, C.

Osten, W.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Pandey, N.

D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).

Pariani, G.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

G. Pariani, C. Bertarelli, G. Dassa, A. Bianco, and G. Zerbi, “Photochromic polyurethanes for rewritable CGHs in optical testing,” Opt. Express 19(5), 4536–4541 (2011).
[Crossref]

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Pruss, C.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Ramarijaona, H.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Rao, Y.

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

Reichelt, S.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Riva, M.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Romanato, F.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Rossi, R.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Ruffato, G.

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

Sakai, W.

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

Shimobaba, T.

Smith, S.L.

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

Spano, P.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Takada, N.

Tangen, K.

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Tchoubaklian, N.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Tiziani, H. J.

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Toccafondi, C.

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

Tricoles, G.

Tsutsumi, N.

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

Vachey, M.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Vailati, C.

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

Valenziano, L.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Wang, C.

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Xie, N.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

Yao, B.

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Zamkotsian, F.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

R. Alata, G. Pariani, F. Zamkotsian, P. Lanzoni, A. Bianco, and C. Bertarelli, “Programmable CGH on photochromic plates coded with DMD generated masks,” Opt. Express 25(6), 6945–6953 (2017).
[Crossref]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Zerbi, F.

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

Zerbi, G.

Adv. Opt. Mater. (1)

Y. Kobayashi and J. Abe, “Real-time dynamic hologram of a 3D object with fast photochromic molecules,” Adv. Opt. Mater. 4(9), 1354–1357 (2016).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IBM J. Res. Dev. (1)

B. R. Brown and A. W. Lohmann, “Computer-generated binary holograms,” IBM J. Res. Dev. 13(2), 160–168 (1969).
[Crossref]

J. Mater. Chem. (1)

G. Pariani, R. Castagna, G. Dassa, S. Hermes, C. Vailati, A. Bianco, and C. Bertarelli, “Diarylethene-based photochromic polyurethanes for multistate optical memories,” J. Mater. Chem. 21(35), 13223–13231 (2011).
[Crossref]

J. Photochem. Photobiol., C (1)

C. Bertarelli, A. Bianco, R. Castagna, and G. Pariani, “Photochromism into optics: Opportunities to develop light-triggered optical elements,” J. Photochem. Photobiol., C 12(2), 106–125 (2011).
[Crossref]

Mater. Sci. Eng., B (1)

N. Xie, Y. Chen, B. Yao, and M. Lie, “Photochromic diarylethene for reversible holographic recording,” Mater. Sci. Eng., B 138(3), 210–213 (2007).
[Crossref]

Opt. Eng. (2)

Y.-T. Lu, C.-S. Chu, and H.-Y. Lin, “Characterization of the gray-scale photolithography with high-resolution gray steps for precise fabrication of diffrative optics,” Opt. Eng. 43(11), 2666–2670 (2004).
[Crossref]

C. Pruss, S. Reichelt, H. J. Tiziani, and W. Osten, “Computer-generated holograms in interferometric testing,” Opt. Eng. 43(11), 2534–2540 (2004).
[Crossref]

Opt. Express (2)

Opt. Mater. (1)

Y. Chen, C. Wang, M. Fan, B. Yao, and N. Menke, “Photochromic fulgide for holographic recording,” Opt. Mater. 26(1), 75–77 (2004).
[Crossref]

Photoniques (1)

L. Jacubowiez, “Computer-generated holograms,” Photoniques 201738–44 (2017).
[Crossref]

Polym. J. (1)

H. N. Giang, K. Kinashi, W. Sakai, and N. Tsutsumi, “Photorefractive response and real-time holographic application of a poly(4-(diphenylamino)benzylacrylate)-based composite,” Polym. J. 46(1), 59–66 (2014).
[Crossref]

Polymers (1)

L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Bertarelli, and A. Bianco, “Photochromic polyurethanes showing a strong change of transparency and refractive index,” Polymers 9(12), 462 (2017).
[Crossref]

Proc. SPIE (4)

F. Zamkotsian, P. Lanzoni, N. Tchoubaklian, H. Ramarijaona, M. Moschetti, M. Riva, M. Jacquet, P. Spano, W. Bon, M. Vachey, L. Nicastro, E. Molinari, R. Consentino, A. Ghedina, M. Gonzalez, W. Boschin, P. Di Marcantonio, I. Coretti, R. Cirami, F. Zerbi, and L. Valenziano, “BATMAN @ TNG: Instrument integration and performance,” Proc. SPIE 10702, 107025P (2018).
[Crossref]

R.S. Nesbitt, S.L. Smith, R.A. Molnar, and S.A. Benton, “Holographic recording using a digital micromirror device,” Proc. SPIE 3637, 12–20 (1999).
[Crossref]

N. Luo, Y. Gao, S. He, and Y. Rao, “Research on exposure model for DMD-based digital gray-tone mask,” Proc. SPIE 7657, 765712 (2010).
[Crossref]

F. Zamkotsian, P. Lanzoni, E. Grassi, R. Barette, C. Fabron, K. Tangen, L. Valenziano, L. Marchand, and L. Duvet, “Successful evaluation for space applications of the 2048×1080 DMD,” Proc. SPIE 7932, 79320A (2011).
[Crossref]

Sci. Rep. (2)

G. Ruffato, R. Rossi, M. Massari, E. Mafakheri, P. Capaldo, and F. Romanato, “Design, fabrication and characterization of computer generated holograms for anti-counterfeiting applications using OAM beams as light decoders,” Sci. Rep. 7(1), 18011 (2017).
[Crossref]

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2(1), 819 (2012).
[Crossref]

Other (3)

D.P. Kelly, D.S. Monaghan, N. Pandey, and B.M. Hennelly, “Fresnel and Fourier digital holography architectures: a comparison,” Fringe 2009, 6th International Workshop on Advanced Optical Metrology, W. Osten and M. Kujawinska eds., Springer, 304–308 (2009).

G. A. Cirino, “Digital holography: computer-generated holograms and diffractive optics,” in Holography - Different Fields of ApplicationF. Monroy, ed. (IntechOpen, 2011).

M. Bass, “Use of computer generated holograms in optical testing,” Handbook of Optics: Volume II - Design, Fabrication, and Testing; Sources and Detectors; Radiometry and Photometry3rd Edition, (McGraw-Hill Professional, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. (a) Complex number to be encoded; correspondent cell of the Lee algorithm (b), Lee compact algorithm (c) and Island coding (d); example of the Lee hologram (e), Lee compact hologram (f) and Island hologram (g).
Fig. 2.
Fig. 2. (a) BATMAN logo original image; regions where parameters are calculated, in red: neighborhood (b), and background (c).
Fig. 3.
Fig. 3. Flowchart of the hologram generation process.
Fig. 4.
Fig. 4. Original images, holograms, and reconstructed images for the Lee 4 by 4 with f = 4 (a, c, e) and the Island 2 by 2 with f = 2 (b, d, f), both coded with 9 quantification levels.
Fig. 5.
Fig. 5. Behavior of the reconstruction parameters as function of the gain factor for the three different codings (Lee 4 by 4, Island 2 by 2, with 9 quantification levels, and Island 2 by 2, with 201 quantification levels): a) correlation, b) diffraction efficiency, c) local contrast and d) global contrast.
Fig. 6.
Fig. 6. Set-up for recording CGHs; it is based on an illumination unit towards the DMD, an imaging optical system based on a 1:1 magnification Offner relay from the DMD plane to the CGH plane, and a post-CGH imaging system. Arrowed red lines represent the path of the optical beam.
Fig. 7.
Fig. 7. (a) Map of the normalized illumination intensity on the DMD area; (b) Response curves of the plate under illumination in visible wavelengths for the two pixels in panel (a); (c) exposure time as function of the musk number in the case of 201 gray level hologram.
Fig. 8.
Fig. 8. (a) The calculated hologram; (b) a portion of the calculated hologram (50 by 50 pixels); (c) a CCD image of the recorder hologram in a similar region. The blurring in this last image is due only to the quality of the CGH post imaging setup.
Fig. 9.
Fig. 9. Reconstruction of the recorded hologram based on the 201 gray levels using the Island coding. The two first diffraction orders, faithfully reproduced, are visible around the zero order.
Fig. 10.
Fig. 10. (a) Simulated and (b) experimental reconstructed images. Single pixels and one pixel wide lines appear clearly on the reconstructed image.

Tables (1)

Tables Icon

Table 1. Summary of the performances of the two different codings.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = T h I 1 I t o t

Metrics