Abstract

Owing to the weak signals produced by all-fiber coherent lidar systems, when the instability of the local oscillator laser power is greater than the target echo signal, it is difficult to extract a target’s intensity image. In this study, an intensity imaging method for weak signal all-fiber lidars is proposed. First, a phase compensation method is used to correct the position of the heterodyne signal in the time domain to reduce the impact of noise on the positioning heterodyne signal. In addition, an algorithm is proposed to extract the weak echo signal from the corrected heterodyne signal in the time domain to obtain the relative intensity of the echo signal of a single pixel point. Finally, we analyze and verify the proposed imaging method by using false alarm rates, range, intensity accuracy, and the speckle characteristics of the target. The method proposed in this study only requires that the phase of the heterodyne signal be corrected by the proposed numerical method without the need for other optical equipment, thus simplifying the entire system. It is very important to improve the detection sensitivity of coherent lidar remote imaging system.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of false alarm in heterodyne coherence accumulation based on sequence shifting and the genetic algorithm

Hongzhou Dong, Chunping Yang, Mingwu Ao, and Yong Liu
Appl. Opt. 57(27) 7865-7870 (2018)

An all-fiber image-reject homodyne coherent Doppler wind lidar

Cyrus F. Abari, Anders T. Pedersen, and Jakob Mann
Opt. Express 22(21) 25880-25894 (2014)

Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control

Peter John Rodrigo and Christian Pedersen
Opt. Express 18(5) 5320-5327 (2010)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
    [Crossref]
  2. G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
    [Crossref]
  3. H. P. Yuen and V. W. S. Chan, “Noise in Homodyne and Heterodyne Detection,” Opt. Lett. 8(3), 177–179 (1983).
    [Crossref] [PubMed]
  4. H. P. Yuen and J. H. Shapiro, in Coherence and Quantum Optics IV (Plenum, 1978).
  5. J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
    [Crossref]
  6. H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
    [Crossref] [PubMed]
  7. P. J. Rodrigo and C. Pedersen, “Reduction of phase-induced intensity noise in a fiber-based coherent Doppler lidar using polarization control,” Opt. Express 18(5), 5320–5327 (2010).
    [Crossref] [PubMed]
  8. H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).
  9. C. Li, Z. Pan, F. Mao, F. W. Gong, and Q. Min, “De-noising and retrieving algorithm of Mie lidar data based on the particle filter and the Fernald method,” Opt. Express 23, 26–509 (2015).
  10. K. Takada, H. Aoyagi, and K. Okamoto, “Correction for phase-shift deviation in a complex Fourier-transform integrated-optic spatial heterodyne spectrometer with an active phase-shift scheme,” Opt. Lett. 36(7), 1044–1046 (2011).
    [Crossref] [PubMed]
  11. J. Zhong and H. Zeng, “Multiscale windowed Fourier transform for phase extraction of fringe patterns,” Appl. Opt. 46(14), 2670–2675 (2007).
    [Crossref] [PubMed]
  12. G. H. Kaufmann and G. E. Galizzi, “Phase measurement in temporal speckle pattern interferometry: comparison between the phase-shifting and the Fourier transform methods,” Appl. Opt. 41(34), 7254–7263 (2002).
    [Crossref] [PubMed]
  13. Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
    [Crossref]
  14. K. W. Fischer and W. R. Skinner, “Effect of speckle on coherent and incoherent Doppler lidar,” Proc. SPIE 2366, 358–366 (1995).
    [Crossref]

2016 (1)

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

2015 (1)

2013 (2)

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).

2012 (1)

G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
[Crossref]

2011 (1)

2010 (1)

2007 (1)

2002 (1)

1995 (1)

K. W. Fischer and W. R. Skinner, “Effect of speckle on coherent and incoherent Doppler lidar,” Proc. SPIE 2366, 358–366 (1995).
[Crossref]

1983 (1)

1979 (2)

H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
[Crossref] [PubMed]

J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
[Crossref]

Aoyagi, H.

Chan, V. W. S.

Changming, Z.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Dehua, Z.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Fischer, K. W.

K. W. Fischer and W. R. Skinner, “Effect of speckle on coherent and incoherent Doppler lidar,” Proc. SPIE 2366, 358–366 (1995).
[Crossref]

Galizzi, G. E.

Gong, F. W.

Haiyang, Z.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Hongzhi, Y.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Hua, D.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Kaufmann, G. H.

Li, C.

Li, S.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Li, Y.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Long, X.

G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
[Crossref]

Mao, F.

Mata, A.

J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
[Crossref]

Min, Q.

Okamoto, K.

Pan, Z.

Pedersen, C.

Rodrigo, P. J.

Shapiro, J. H.

H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
[Crossref] [PubMed]

J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
[Crossref]

Skinner, W. R.

K. W. Fischer and W. R. Skinner, “Effect of speckle on coherent and incoherent Doppler lidar,” Proc. SPIE 2366, 358–366 (1995).
[Crossref]

Suhui, Y.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Takada, K.

Wang, H.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Wang, T. F.

H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).

Wang, Y.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Wei, G.

G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
[Crossref]

Xingyuan, Z.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Yan, Q.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Yuen, H. P.

H. P. Yuen and V. W. S. Chan, “Noise in Homodyne and Heterodyne Detection,” Opt. Lett. 8(3), 177–179 (1983).
[Crossref] [PubMed]

H. P. Yuen and J. H. Shapiro, “Generation and detection of two-photon coherent states in degenerate four-wave mixing,” Opt. Lett. 4(10), 334–336 (1979).
[Crossref] [PubMed]

J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
[Crossref]

Zeng, H.

Zhang, H. Y.

H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).

Zhao, S.

H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).

Zheng, Z.

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Zhong, J.

Zhou, J.

G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
[Crossref]

Zhou, Z.

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Appl. Opt. (2)

IEEE Trans. Inf. Theory (1)

J. H. Shapiro, H. P. Yuen, and A. Mata, “Optical communication with two-photon coherent states–Part II: Photoemissive detection and structured receiver performance,” IEEE Trans. Inf. Theory 25(2), 179–192 (1979).
[Crossref]

Opt. Acta (Lond.) (1)

H. Y. Zhang, S. Zhao, and T. F. Wang, “Analysis of SNR for laser heterodyne detection with a weak local oscillator based on a MPPC,” Opt. Acta (Lond.) 60, 11 (2013).

Opt. Express (2)

Opt. Laser Technol. (2)

G. Wei, J. Zhou, and X. Long, “Analysis of signal-to-noise ratio and heterodyne efficiency for reference-beam laser Doppler velocimeter,” Opt. Laser Technol. 44(1), 108–113 (2012).
[Crossref]

Z. Zheng, Z. Changming, Z. Haiyang, Y. Suhui, Z. Dehua, Z. Xingyuan, and Y. Hongzhi, “Influence of speckle effect on doppler velocity measurement,” Opt. Laser Technol. 80, 22–27 (2016).
[Crossref]

Opt. Lasers Eng. (1)

Z. Zhou, D. Hua, Y. Wang, Q. Yan, S. Li, Y. Li, and H. Wang, “Improvement of the signal to noise ratio of Lidar echo signal based on wavelet de-noising technique,” Opt. Lasers Eng. 51(8), 961–966 (2013).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

K. W. Fischer and W. R. Skinner, “Effect of speckle on coherent and incoherent Doppler lidar,” Proc. SPIE 2366, 358–366 (1995).
[Crossref]

Other (1)

H. P. Yuen and J. H. Shapiro, in Coherence and Quantum Optics IV (Plenum, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Simulated heterodyne time domain signal; (b) windowed Fourier transform plot showing the peak curve.
Fig. 2
Fig. 2 (a) Deviation curve of the heterodyne signal position by window Fourier transform; (b) deviation value curve of the position of the heterodyne signal obtained after phase correction.
Fig. 3
Fig. 3 Image of the test equipment.
Fig. 4
Fig. 4 Schematic of the test system.
Fig. 5
Fig. 5 (a) Whiteboard target used in the experiments; (b) a single pixel signal collected by the acquisition card.
Fig. 6
Fig. 6 Intensity images for a target distance of (a) 30 m and (b) 33 m from the lidar.
Fig. 7
Fig. 7 (a) – (d): Non-phase compensated relative intensity images for target distances of 30, 31, 32, and 33 m, respectively.
Fig. 8
Fig. 8 (a) – (d) Phase compensated relative intensity images for target distances of 30, 31, 32, and 33 m, respectively.
Fig. 9
Fig. 9 (a) Distance image before phase correction; (b) distance image after phase correction.
Fig. 10
Fig. 10 Probability density function of intensity values under the speckle mechanism (Normalized negative exponential distribution).
Fig. 11
Fig. 11 (a) – (d) Statistical distributions of the relative intensity for target distances of 30, 31, 32, and 33 m without phase correction, respectively.
Fig. 12
Fig. 12 (a) – (d) Statistical distributions of the relative intensity for target distances of 30, 31, 32, and 33 m after phase correction, respectively.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E S (r,ϕ,t)= A s (r,ϕ,t)exp{ i[ w s t+ φ s (r,ϕ,t) ] }.
E L (r,ϕ,t)= A L (r,ϕ,t)exp{ i[ w L t+ φ l (r,ϕ,t) ] }.
E(r,ϕ,t)= E s (r,ϕ,t)+ E L (r,ϕ,t).
i(t)~I(t)= ηe hvz E(r,ϕ,t)* E * (r,ϕ,t)= ηe hvz [ 2 A s (r,ϕ,t) A L (r,ϕ,t)cos[( w s w L )t+ φ s (r,ϕ,t) φ l (r,ϕ,t)]+ A s 2 (r,ϕ,t)+ A L 2 (r,ϕ,t) ].
i IF (t)~ ηe hvz A s (r,ϕ,t) A L (r,ϕ,t)cos[( w s w L )t
F(f)=R(f)+i*I(f).
F(f)=| F(f) |* e jϕ .
ϕ=arctan{ I(f)/R(f) }.
t 2 ={ t 1 +{ | ϕ* 180 π -180 |/360 }*(1/ f ' ) ϕ>0 t 1 { | ϕ* 180 π +180 |/360 }*(1/ f ' ) ϕ<0 .
E= A s A l cos(Δwt+Δφ)=cos(1.2πtπ)
E IF = A s * A l *cos(Δwt+Δφ). Δw= w s w l Δφ= φ s φ l
E IF1 = A s1 * A l1 *cos(Δwt+Δφ)= A s1 *( A l + n 1 )*cos(Δwt+Δφ) E IF2 = A s2 * A l2 *cos(Δwt+Δφ)= A s2 *( A l + n 2 )*cos(Δwt+Δφ) E IF3 = A s3 * A l3 *cos(Δwt+Δφ)= A s3 *( A l + n 3 )*cos(Δwt+Δφ). ...... E IFn = A sn * A ln *cos(Δwt+Δφ)= A sn *( A l + n n )*cos(Δwt+Δφ)
E IF1 E IFm = A s1 *( A l + n 1 )*cos(Δwt+Δφ) A sm *( A l + n m )*cos(Δwt+Δφ) = A s1 A sm *[ 1+ ( n m - n 1 ) ( A l + n m ) ] ...... E IFn E IFm = A sn *( A l + n 2 )*cos(Δwt+Δφ) A sm *( A l + n m )*cos(Δwt+Δφ) = A sn A sm *[ 1+ ( n m - n 1 ) ( A l + n m ) ].
E A sn A sm .
P( I )= I p I ( τ )dτ= ( M <I> ) M × I M1 ×exp[M I <I> ] Γ(M)

Metrics