Abstract

A multivariate method integrating time and space resolved techniques of near-infrared spectroscopy is proposed for simultaneously retrieving the absolute quantities of optical absorption and scattering properties in tissues. The time-domain feature of photon migration is advantageously constrained and regularized by its spatially-resolved amplitude patterns in the inverse procedure. Measurements of tissue-mimicking phantoms with various optical properties are analyzed with Monte-Carlo simulations to validate the method performance. The uniqueness, stability, and uncertainty of the method are discussed.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths

Yasser S. Fawzi, Abo-Bakr M. Youssef, Mohamed H. El-Batanony, and Yasser M. Kadah
Appl. Opt. 42(31) 6398-6411 (2003)

Separation of superficial and cerebral hemodynamics using a single distance time-domain NIRS measurement

Alexander Jelzow, Heidrun Wabnitz, Ilias Tachtsidis, Evgeniya Kirilina, Rüdiger Brühl, and Rainer Macdonald
Biomed. Opt. Express 5(5) 1465-1482 (2014)

References

  • View by:
  • |
  • |
  • |

  1. F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
    [Crossref]
  2. A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
    [Crossref]
  3. F. F. Jöbsis-VanderVliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt. 4(4), 392–397 (1999).
    [Crossref]
  4. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
    [Crossref]
  5. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
    [Crossref]
  6. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
    [Crossref]
  7. Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016).
    [Crossref]
  8. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [Crossref]
  9. A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
    [Crossref]
  10. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
    [Crossref]
  11. A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
    [Crossref]
  12. M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
    [Crossref]
  13. N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front. Hum. Neurosci. 9(3), 3 (2015).
    [Crossref]
  14. D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
    [Crossref]
  15. C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
    [Crossref]
  16. W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
    [Crossref]
  17. N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
    [Crossref]
  18. V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
    [Crossref]
  19. S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
    [Crossref]
  20. F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
    [Crossref]
  21. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [Crossref]
  22. J. B. Fishkin and E. Gratton, “Propagation of photon-density waves in strongly scattering media containing an absorbing semi-infinite plane bounded by a straight edge,” J. Opt. Soc. Am. A 10(1), 127–140 (1993).
    [Crossref]
  23. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Reflectance-mode interferometric near-infrared spectroscopy quantifies brain absorption, scattering, and blood flow index in vivo,” Opt. Lett. 42(3), 591–594 (2017).
    [Crossref]
  24. D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Correlation gating quantifies the optical properties of dynamic media in transmission,” Opt. Lett. 43(23), 5881–5884 (2018).
    [Crossref]
  25. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998).
    [Crossref]
  26. J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
    [Crossref]
  27. A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
    [Crossref]
  28. D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St. Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
    [Crossref]
  29. D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St. Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
    [Crossref]
  30. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
    [Crossref]
  31. M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
    [Crossref]
  32. A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966 (2012).
    [Crossref]
  33. A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
    [Crossref]
  34. A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
    [Crossref]
  35. H. Wabnitz and H. Rinneberg, “Imaging in turbid media by photon density waves: spatial resolution and scaling relations,” Appl. Opt. 36(1), 64–74 (1997).
    [Crossref]
  36. A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
    [Crossref]
  37. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
    [Crossref]
  38. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
    [Crossref]
  39. L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
    [Crossref]
  40. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–517 (2003).
    [Crossref]
  41. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [Crossref]

2018 (2)

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

D. Borycki, O. Kholiqov, and V. J. Srinivasan, “Correlation gating quantifies the optical properties of dynamic media in transmission,” Opt. Lett. 43(23), 5881–5884 (2018).
[Crossref]

2017 (1)

2016 (9)

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St. Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref]

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St. Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref]

Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

2015 (2)

2014 (5)

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

2012 (2)

2010 (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

2009 (2)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref]

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[Crossref]

2008 (2)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref]

2007 (1)

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref]

2003 (3)

2001 (1)

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

1999 (4)

F. F. Jöbsis-VanderVliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt. 4(4), 392–397 (1999).
[Crossref]

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

1998 (2)

1997 (1)

1993 (1)

1989 (1)

1977 (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref]

Abdalmalak, A.

Alaraj, A.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[Crossref]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref]

Andersson-Engels, S.

Andresen, B.

Arridge, S. R.

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998).
[Crossref]

Backhaus, J.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref]

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Bale, G.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref]

Bargigia, I.

Baribeau, F.

Bénazech-Lavoué, M.

Bérubé-Lauzière, Y.

Boas, D. A.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

Bodnar, O.

Borycki, D.

Botwicz, M.

Bouchard, J.-P.

Caffini, M.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Calderon-Arnulphi, M.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[Crossref]

Cerussi, A. E.

Chance, B.

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Contini, D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Cubeddu, R.

Dam, J. S.

Davidson, B.

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

Delpy, D.

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

Di Ninni, P.

Diop, M.

Dubb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

Durduran, T.

Durkin, A. F.

Eick, A.

El-Desoky, A.

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

Elster, C.

Elwell, C. E.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref]

Fang, Q.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

Farina, A.

Farzam, P.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Ferrari, M.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref]

Fishkin, J. B.

Foschum, F.

Freyer, J.

Fugger, O.

Gallant, P.

Gerbelot, R.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Gerega, A.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Gioux, S.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Grateau, H.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Gratton, E.

Greisen, G.

Grosenick, D.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–517 (2003).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

Haghany, H.

Halperin, I.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Hanzu, F. A.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Heise, H. M.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref]

Hielscher, A.

Hill, B.

Ho, H.-C.

Hong, K.-S.

N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front. Hum. Neurosci. 9(3), 3 (2015).
[Crossref]

Hoshi, Y.

Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016).
[Crossref]

Jäger, M.

Jallon, P.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Janusek, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St. Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref]

Jöbsis, F. F.

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref]

Jöbsis-VanderVliet, F. F.

F. F. Jöbsis-VanderVliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt. 4(4), 392–397 (1999).
[Crossref]

Johansson, J.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Johnson, T.

Kacprzak, M.

Keene, S.

Kholiqov, O.

Khoptyar, D.

Kienle, A.

Klauenberg, K.

Kleiser, S.

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Kobayashi, Y.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Koenig, A.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Kondepati, V. R.

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref]

Leclair, S.

Leproux, A.

Lesage, F.

Liebert, A.

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St. Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St. Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref]

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–517 (2003).
[Crossref]

Lindner, C.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Lionheart, W. R.

Macdonald, R.

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–517 (2003).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, and H. Rinneberg, “Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons,” Appl. Opt. 42(28), 5785–5792 (2003).
[Crossref]

Mancini, M. C.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref]

Maniewski, R.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Mantulin, W. M.

Martelli, F.

Mazurenka, M.

McLachlan, P.

Mermut, O.

Metz, A. J.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Milej, D.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

D. Milej, A. Abdalmalak, D. Janusek, M. Diop, A. Liebert, and K. St. Lawrence, “Time-resolved subtraction method for measuring optical properties of turbid media,” Appl. Opt. 55(7), 1507–1513 (2016).
[Crossref]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St. Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

Möller, M.

Mora, A. D.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Mora, M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Mourant, J.

Naseer, N.

N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front. Hum. Neurosci. 9(3), 3 (2015).
[Crossref]

Nasseri, N.

Nie, S.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref]

Noiseux, I.

O’Sullivan, T. D.

Ogden, T. M.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

Ozaki, T.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Patterson, M. S.

Pavia, J. M.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Petitdidier, N.

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

Pifferi, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Quang, T.

Quaresima, V.

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref]

Re, R.

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

Rinneberg, H.

Roblyer, D.

Sawosz, P.

Scholkmann, F.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Schweiger, M.

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

Seifalian, A.

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

Selb, J.

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

Shen, D.

Simon, E.

Slavin, K. V.

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[Crossref]

Smith, A. M.

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref]

Spinelli, L.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Squarcia, M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Srinivasan, V. J.

St. Lawrence, K.

Subash, A. A.

Suzuki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref]

Swartling, J.

Tachtsidis, I.

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref]

Takasaki, S.

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Taroni, P.

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]

Torricelli, A.

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Tromberg, B. J.

Wabnitz, H.

Warren, R.

Weigel, U.

Weigel, U. M.

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Weigl, W.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Wilson, B. C.

Wojtkiewicz, S.

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

Wolf, M.

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref]

Wolf, U.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Yamada, Y.

Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016).
[Crossref]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Zaccanti, G.

Zimmermann, R.

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

Zolek, N.

Zucchelli, L.

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Anal. Bioanal. Chem. (1)

V. R. Kondepati, H. M. Heise, and J. Backhaus, “Recent applications of near-infrared spectroscopy in cancer diagnosis and therapy,” Anal. Bioanal. Chem. 390(1), 125–139 (2008).
[Crossref]

Appl. Opt. (6)

Biomed. Opt. Express (5)

S. Kleiser, N. Nasseri, B. Andresen, G. Greisen, and M. Wolf, “Comparison of tissue oximeters on a liquid phantom with adjustable optical properties,” Biomed. Opt. Express 7(8), 2973–2992 (2016).
[Crossref]

D. Milej, A. Abdalmalak, P. McLachlan, M. Diop, A. Liebert, and K. St. Lawrence, “Subtraction-based approach for enhancing the depth sensitivity of time-resolved NIRS,” Biomed. Opt. Express 7(11), 4514–4526 (2016).
[Crossref]

A. E. Cerussi, R. Warren, B. Hill, D. Roblyer, A. Leproux, A. F. Durkin, T. D. O’Sullivan, S. Keene, H. Haghany, T. Quang, W. M. Mantulin, and B. J. Tromberg, “Tissue phantoms in multicenter clinical trials for diffuse optical technologies,” Biomed. Opt. Express 3(5), 966 (2012).
[Crossref]

L. Spinelli, M. Botwicz, N. Zolek, M. Kacprzak, D. Milej, P. Sawosz, A. Liebert, U. Weigel, T. Durduran, F. Foschum, A. Kienle, F. Baribeau, S. Leclair, J.-P. Bouchard, I. Noiseux, P. Gallant, O. Mermut, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, H.-C. Ho, M. Mazurenka, H. Wabnitz, K. Klauenberg, O. Bodnar, C. Elster, M. Bénazech-Lavoué, Y. Bérubé-Lauzière, F. Lesage, D. Khoptyar, A. A. Subash, S. Andersson-Engels, P. Di Ninni, F. Martelli, and G. Zaccanti, “Determination of reference values for optical properties of liquid phantoms based on Intralipid and India ink,” Biomed. Opt. Express 5(7), 2037–2053 (2014).
[Crossref]

A. Farina, A. Torricelli, I. Bargigia, L. Spinelli, R. Cubeddu, F. Foschum, M. Jäger, E. Simon, O. Fugger, A. Kienle, F. Martelli, P. Di Ninni, G. Zaccanti, D. Milej, P. Sawosz, M. Kacprzak, A. Liebert, and A. Pifferi, “In-vivo multilaboratory investigation of the optical properties of the human head,” Biomed. Opt. Express 6(7), 2609–2623 (2015).
[Crossref]

Front. Hum. Neurosci. (1)

N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front. Hum. Neurosci. 9(3), 3 (2015).
[Crossref]

Funct. Neurol. (1)

A. Torricelli, D. Contini, A. D. Mora, A. Pifferi, R. Re, L. Zucchelli, M. Caffini, A. Farina, and L. Spinelli, “Neurophotonics: non-invasive optical techniques for monitoring brain functions,” Funct. Neurol. 29(4), 223 (2014).
[Crossref]

Inverse Probl. (1)

S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41–R93 (1999).
[Crossref]

J. Biomed. Opt. (10)

J. Selb, T. M. Ogden, J. Dubb, Q. Fang, and D. A. Boas, “Comparison of a layered slab and an atlas head model for Monte Carlo fitting of time-domain near-infrared spectroscopy data of the adult head,” J. Biomed. Opt. 19(1), 016010 (2014).
[Crossref]

A. Pifferi, D. Contini, A. D. Mora, A. Farina, L. Spinelli, and A. Torricelli, “New frontiers in time-domain diffuse optics, a review,” J. Biomed. Opt. 21(9), 091310 (2016).
[Crossref]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–517 (2003).
[Crossref]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[Crossref]

D. Grosenick, H. Rinneberg, R. Cubeddu, and P. Taroni, “Review of optical breast imaging and spectroscopy,” J. Biomed. Opt. 21(9), 091311 (2016).
[Crossref]

N. Petitdidier, A. Koenig, H. Grateau, P. Jallon, N. Petitdidier, A. Koenig, R. Gerbelot, H. Grateau, S. Gioux, and P. Jallon, “Contact, high-resolution spatial diffuse reflectance imaging system for skin condition diagnosis,” J. Biomed. Opt. 23(11), 1 (2018).
[Crossref]

F. F. Jöbsis-VanderVliet, “Discovery of the near-infrared window into the body and the early development of near-infrared spectroscopy,” J. Biomed. Opt. 4(4), 392–397 (1999).
[Crossref]

G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016).
[Crossref]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt. 12(6), 062104 (2007).
[Crossref]

Y. Hoshi and Y. Yamada, “Overview of diffuse optical tomography and its clinical applications,” J. Biomed. Opt. 21(9), 091312 (2016).
[Crossref]

J. Cereb. Blood Flow Metab. (1)

W. Weigl, D. Milej, D. Janusek, S. Wojtkiewicz, P. Sawosz, M. Kacprzak, A. Gerega, R. Maniewski, and A. Liebert, “Application of optical methods in the monitoring of traumatic brain injury: A review,” J. Cereb. Blood Flow Metab. 36(11), 1825–1843 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Liver Int. (1)

A. El-Desoky, D. Delpy, B. Davidson, and A. Seifalian, “Assessment of hepatic ischaemia reperfusion injury by measuring intracellular tissue oxygenation using near infrared spectroscopy,” Liver Int. 21(1), 37–44 (2001).
[Crossref]

Nat. Nanotechnol. (1)

A. M. Smith, M. C. Mancini, and S. Nie, “Bioimaging: second window for in vivo imaging,” Nat. Nanotechnol. 4(11), 710–711 (2009).
[Crossref]

NeuroImage (3)

M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).
[Crossref]

F. Scholkmann, S. Kleiser, A. J. Metz, R. Zimmermann, J. M. Pavia, U. Wolf, and M. Wolf, “A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology,” NeuroImage 85, 6–27 (2014).
[Crossref]

A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, and L. Spinelli, “Time domain functional NIRS imaging for human brain mapping,” NeuroImage 85, 28–50 (2014).
[Crossref]

Neurol. Res. (1)

M. Calderon-Arnulphi, A. Alaraj, and K. V. Slavin, “Near infrared technology in neuroscience: past, present and future,” Neurol. Res. 31(6), 605–614 (2009).
[Crossref]

Opt. Lett. (3)

Phys. Med. Biol. (1)

M. Schweiger and S. R. Arridge, “Application of temporal filters to time resolved data in optical tomography,” Phys. Med. Biol. 44(7), 1699–1717 (1999).
[Crossref]

PLoS One (1)

C. Lindner, M. Mora, P. Farzam, M. Squarcia, J. Johansson, U. M. Weigel, I. Halperin, F. A. Hanzu, and T. Durduran, “Diffuse optical characterization of the healthy human thyroid tissue and two pathological case studies,” PLoS One 11(1), e0147851–22 (2016).
[Crossref]

Proc. SPIE (1)

S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “Tissue oxygenation monitor using NIR spatially resolved spectroscopy,” Proc. SPIE 3597, 582–592 (1999).
[Crossref]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010).
[Crossref]

Science (1)

F. F. Jöbsis, “Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,” Science 198(4323), 1264–1267 (1977).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Monte-Carlo simulations of 5 adjacent (µa, µs′) combinations. Their reflectance profiles in (a) TD: DTOFs, (b) SD: SRACs, and the χ2 distributions on the {µa, µs′} space based on: (c) TD fit, (d) SD fit, and (e) Spatially-enhanced TD method. The white X is the true value (0.127, 13.9) cm−1, and the crosses in other colors are the optimal solutions of respective methods.
Fig. 2.
Fig. 2. The evolution of χ2 contour along with iterations. The solid lines are contours of 2 times minimal χ2. The dotted lines are the connected extrema of µa and µs′ at each contour. r denotes the Pearson correlation coefficient of the points on the red contours.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup. The solid lines are optical paths and the dotted lines are electric signals paths.
Fig. 4.
Fig. 4. (a) DTOFs measured on β2 at source-detector distances ρ: from 15 to 25 mm. (b) Conventional TD model: The optimal curve fit for DTOF at ρ=20 mm, the IRF curve and the weighted residuals. Global TD model: (c) the optimal curve fit, and (d) weighted residuals of DTOFs at various ρ (top: 15 mm, bottom: 25 mm).
Fig. 5.
Fig. 5. χ2 distributions in the {µa, µs′} space. From left to right: conventional TD, SD, Global TD, and Spatially-enhanced TD; from top to bottom: Phantom α2, β2, γ1, γ2 and γ3.

Tables (6)

Tables Icon

Table 1. The components in 5 solid homogenous phantoms measured in the experiments. Columns Scatterer and Absorber denote the added amount of scatter stock solution (1:10 mixture of TiO2 and resin) and absorber stock solution (1:100 mixture of toner and hardener).

Tables Icon

Table 2. The absorption and reduced scattering coefficients derived from conventional, global, and spatially-enhanced TD methods. (units: cm−1)

Tables Icon

Table 3. The uncertainty comparison about µa and µs′ of different methods.

Tables Icon

Table 4. Comparison the area of 5 times χmin2 contour of different methods

Tables Icon

Table 5. Pearson correlation coefficients of 5×χmin2 contour lines

Tables Icon

Table 6. Comparison of coefficient of variation for different methods

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V = 1 4 c 2 3 ρ 2 μ s μ a 3
R ( ρ , t ) = z 0 ( 4 π D c ) 3 / 2 t 5 / 2 exp ( μ a c t ρ 2 4 D c t )
R ( ρ ) = 0 R ( ρ , t ) d t = z 0 e μ e f f ρ 2 π ρ 2 ( μ e f f + 1 ρ )
A ρ = ln ( R ) ρ μ e f f + 2 ρ
χ S T 2 = χ T 2 + λ χ S 2
Q ( λ ) = 4 π A r e a P e r i m e t e r 2 | χ S T 2 = c o n s t . 1
χ 2 = 1 n 2 i = 1 n ( m i s i σ i ) 2
ε = ( μ M a x μ M i n ) | 5 χ O p t i m a 2 μ O p t i m a
r | 5 χ O p t i m a 2 = C o v ( μ a , μ s ) σ ( μ a ) σ ( μ s )

Metrics